

Ministry of Higher Education and Scientific Research

Scientific Supervision and Scientific Evaluation Apparatus

Directorate of Quality Assurance and Academic Accreditation

Accreditation Department



Academic Program

and Course

Description Guide

2025

P
A
G
E

Introduction:

The educational program is a well-planned set of courses that include

procedures and experiences arranged in the form of an academic syllabus. Its

main goal is to improve and build graduates' skills so they are ready for the

job market. The program is reviewed and evaluated every year through

internal or external audit procedures and programs like the External Examiner

Program.

The academic program description is a short summary of the main

features of the program and its courses. It shows what skills students are

working to develop based on the program's goals. This description is very

important because it is the main part of getting the program accredited, and

it is written by the teaching staff together under the supervision of scientific

committees in the scientific departments.

P
A
G
E

P
A
G
E

1. Program Vision

Our vision is to be a leading computer science department recognized for its innovation, excellence,
and societal impact. We strive to be at the forefront of computer science education, research, and
technology development, equipping our students with the knowledge, skills, and mindset necessary
to address complex challenges and make meaningful contributions in academia, industry,
entrepreneurship, and public service. We aim to cultivate a culture of curiosity, collaboration, and
creativity, where interdisciplinary approaches are embraced, ethical considerations are paramount,
and technological advancements are leveraged to address global problems and improve the human
condition.

2. Program Mission

The mission of our computer science department is to provide a comprehensive and rigorous
education in computer science that prepares students for successful careers, advanced studies, and
lifelong learning in the rapidly evolving field of computing. We are committed to fostering a diverse
and inclusive community of learners and researchers, promoting excellence in teaching and
research, and engaging in collaborations that contribute to the advancement of computer science
and its applications.

3. Program Objectives

1. Prepare and qualify specialists to meet the demands of the public and private labor market in
computer science and information technology by diversifying learning and teaching methods
and training students to apply acquired knowledge and skills to solve real-life problems.

2. Create an appropriate environment for students, enabling them to apply their acquired
knowledge and skills to identify the needs and problems of society and social issues related
to computers and information technology.

3. Offer distinguished academic programs in computer science and information technology,
both theoretical and applied, that comply with international standards for academic quality
and meet the needs of the labor market.

4. Encourage and develop scientific research in the fields of computer science and information
technology in general, and in the fields of artificial intelligence, linguistics, software,
networks, and databases.

5. Creating a stimulating environment for faculty members to develop their knowledge,
teaching, and research skills.

6. Building and developing partnerships with the government, private sectors, and the
community, including all its various institutions.

7. Program Accreditation

8. Other external influences

None

P
A
G
E

9. Program Structure

Program Structure Number
of Courses

Credit hours Percentage Reviews*

Institution
Requirements 7 14 9%

College
Requirements 7 20 14%

Department
Requirements 25 108 77%

Summer Training 1 0

Other

*This can include notes whether the course is basic or optional.

10. Program Description

Year/Level
Course
Code

Course Name
Credit Hours

theoretical practical

First Year
First Semester

 Programming I 3 2

 Mathematics for computing 3

 Computer Skills 2 2

 English Language I 2

 Democracy Education & Human Rights 2

 Fitness and Sport 2

First Year
Second Semester

 Programming II 3 2

 Digital Logic Design 3 2

 Computer Applications 2 2

 Discrete Structures 3

 Principles of Information technology 2 2

 English Language II 2

Second Year
First Semester

 Object Oriented programming I 2 2

 Computer Graphics 2 2

 Microprocessor and assembly
language

2 2

 System Analysis and Design 3

 Probability and statistics 3

 Arabic Language Skills 2

P
A
G
E

Second Year
Second Semester

 Object Oriented programming II 2 2

 Visual Programming 2 2

 Computation theory 3

 Database concepts and design 2 2

 Data Structures I 2 2

 Numerical methods 2 2

Third Year
First Semester

 Artificial Intelligence 2 2

 Software Engineering 3

 Web Programming I 2 2

 Computer Networks I 3

 Data Structures II 2 2

 Concepts of Programming languages 2

Third Year
Second Semester

 Complier construction 3 2

 Computer Network II 2 2

 Web Programming II 2 2

 Operations Research 3

 Computer Ethics 2

 Computer Architecture 3

Fourth Year
First Semester

 Operating Systems 2 2

 Mobile Applications Programming 2 2

 Computer vision 2 2

 Data Mining 2

 Cloud computing 2

 Computational Intelligence 3

 Graduation Project 4

Fourth Year
Second Semester

 Computer simulation 3

 Computer Security 3

 Human-Computer Interaction 3

 Knowledge Engineering 3

 Communication Skills 3

 Selected Topics 3

P
A
G
E

8. Expected learning outcomes of the program

Knowledge

A1. The student will learn programming languages, the skills of designing various application
programs using several programming languages, and finding scientific solutions to societal
problems through programming.

A2. The student will be taught the basics of computer network management and the ability to
use and develop wired and wireless communication and networking tools, in addition to
teaching the student the skills of website design and supervision.

A3. The student will be provided with the basic rules for evaluating and building software
systems, enabling them to analyze and evaluate systems before beginning to design the
system. The student's knowledge of the basics of implementing software systems will
increase through understanding the mechanisms of computer operation.

A4. The student's skills in building intelligent systems, which are based on analysis, inference,
heuristics, and self-learning, will be developed.

Skills

B1. Design, write, and debug software using programming languages.
B2. Use appropriate computer-designed support tools.
B3. Master the skills of research, report writing, presentation, discussion, and internet

research related to course topics.
B4. Master the skills of critical and analytical thinking and problem-solving.

Ethics

C1. The student develops a positive attitude toward learning computer science.
C2. The student takes pride in his practical skills when directly using the computer.
C3. The student participates and cooperates with his classmates to produce public service

websites.
C4. The student senses the importance of the knowledge he receives in facilitating many of

the tasks he performs.

9. Teaching and Learning Strategies

10. Evaluation methods

1. Central and monthly exams.
2. Instant exams.
3. Scientific reports.
4. Practical exams.
5. Research projects.

11. Faculty

Faculty Members

P
A
G
E

Academic Rank Specialization Special
Requirements/Skills (if
applicable)

Number of the
teaching staff

General Special Staff Lecturer

Professor
Computer

Science
 3

Assistant Professor
Computer

Science
 7

Lecturer
Computer

Science

11 2

Assistant Lecturer
Computer

Science
 12 2

Professional Development

Mentoring new faculty members

 E-Learning

 Attending training courses and workshops

 Attending conferences

 Cooperating with professional faculty members

Professional development of faculty members

12. Acceptance Criterion

 Central Admission

 The student's average with the student's desire to be accepted in departments.

13. The most important sources of information about the program

College website:
https://en.cit.uobasrah.edu.iq/

14. Program Development Plan

https://en.cit.uobasrah.edu.iq/

P
A
G
E

Program Skills Outline

 Required program Learning outcomes

Year/Level
Course
Code

Course
Name

Basic or
optional

Knowledge Skills Ethics

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

First

 Programming1 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Programming2 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Logic Design Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Discrete Structures Basic ✓ ✓ ✓

 Computer skills Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Second

Object-Oriented
Programming 1

Basic
✓

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Object-Oriented
Programming 2

Basic
✓

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Data Structures 1 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Visual Programming Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Microprocessors Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Computation Theory Basic ✓ ✓ ✓ ✓ ✓ ✓

Third

 Software Engineering Basic ✓ ✓ ✓ ✓ ✓ ✓

 Artificial Intelligent Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Computer Networks 1 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Computer Networks 2 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P
A
G
E

 Computer Architecture Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Compiler Construction Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Data Structures 2 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Web Programming 1 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Web Programming 2 Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fourth

 Operating Systems Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Computer Security Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Mobile Applications Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Communication Skills Basic ✓ ✓ ✓ ✓

 Cloud Computing Basic ✓ ✓ ✓ ✓ ✓ ✓ ✓

13

First Year - First Semester

Programming I

1. Course Name:

Programming I

2. Course Code:

UoB12345

3. Semester / Year:

1st / 2025-2026

4. Description Preparation Date:

01/06/2023

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total):

125/5

7. Course administrator's name (mention all, if more than one name):

 Name: Maalim A. Aljabery
 Email: maalim.aljabery@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives

By the end of this course, students should be able to:

 Understand Core Programming Concepts:

Grasp the fundamentals of programming, including variables,
data types, operators, expressions, and control structures.

 Develop Problem-Solving Skills:

Analyze problems logically and design algorithms to solve them
efficiently.

 Write and Debug Programs:

Implement basic programs using a high-level programming
language and effectively debug and test them.

 Apply Structured Programming Techniques:

Use modular design, functions, and proper coding practices to
create clear and maintainable programs.

 Build Computational Thinking:

Strengthen logical reasoning and algorithmic thinking applicable
to real-world computing problems.

 Prepare for Advanced Courses:
Establish a foundation for subsequent programming and software
development courses in the undergraduate curriculum.

mailto:maalim.aljabery@uobasrah.edu.iq

14

9. Teaching and Learning Strategies

Strategy

When teaching a programming I course to beginners, it's important to adopt
strategies that cater to their foundational understanding and gradually build their
knowledge and skills. Here are some effective learning and teaching strategies for
beginners in a Programming I course:

10. Course Structure

Week Hours
Required Learning

Outcomes
Unit or subject name

Learning
method

Evaluation
method

16 3/W Programming I

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks
(curricular books, if
any)

 Algorithm and Programming Fundamentals:

“Introduction to Programming Using Java” by David J. Eck

“Java Programming: From Problem Analysis to Program Design”
by D.S. Malik

Main references
(sources)

Recommended
books and
references (scientific
journals, reports...)

Textbooks and Reference Books
 Core Java Programming Books:
o “Java: How to Program” by Deitel & Deitel
o “Head First Java” by Kathy Sierra & Bert Bates
o “Effective Java” by Joshua Bloch (for best practices, even at an

introductory level)

Electronic
References, Websites

Online Resources

 Official Java Documentation:
Oracle Java Documentation

 Educational Platforms:
Codecademy – Java Course
Coursera, edX, Udemy – Java Fundamentals Courses

 Interactive Coding Websites:
HackerRank – Java Practice
LeetCode – Java Problems

https://www.coursera.org/

15

Mathematics For Computing

Module Information

Module Title Mathematics For Computing Module Delivery

Module Type Core

 ☒ Theory

 ☒ l Lectures

Module Code

ECTS Credits

SWL (hr/sem) 100

Module Level UGx11 1 Semester of Delivery 1

Administering Department Type Dept. Code College Type College Code

Module Leader Naser Oda Jassim e-mail Nasir.jasim@uobasrah.edu.iq

Module Leader’s Acad. Title Lecturer Module Leader’s Qualification Ph.D.

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 13/09/2025 Version Number 1.0

Relation with other Modules

Prerequisite module Mathematics for computing Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

 Module Objectives

-Cognitive Goals

1. Upon Successful completion of this subject, students should :

2. Be able to use algebra accurately;

3. Be able to plot and interpret graphs

4. Be able to use exponential, logarithm, and trigonometric functions in

applications;

5. Be able to calculate the sums of arithmetic and geometric series and use them

in simple financial calculations;

6. Be able to use basic rules of differentiation and calculate derivatives of simple

functions;

7. Be able to use matrices in solving linear systems of equations;

 -Skill goals

1. Enable the student to refer the mathematical problem to a program and find a solution

through the computer.

2. Student realization of the close relationship between mathematical problems and

computer programs

16

Module Learning

Outcomes

Important: Write at least 6 Learning Outcomes, better to be equal to the

number of study weeks.

1. This subject is designed for students who enter university without a strong

background in mathematics

2. It is also for students who are planning to enrol in subjects requiring basic

numeracy skills, such as sciences, computing and information technology.

3. The subject reinforces calculation skills and basic algebra.

4. This subject is designed to work with formulas.

5. It is also to use applications of exponential and logarithmic functions.

6. It is designed to apply matrix to solve linear systems of equations.

Indicative Contents

Indicative content includes the following.

Part A – Sequences and series

 Sequence is a function whose domain is the set of natural numbers. The terms of the
sequence are the function values. There will be studied two types of sequences:
arithmetic and geometric sequences with their partial sums. While a series means the
infinite sum of a geometric sequence. [12 hrs]

Part B – Matrices

 Matrices are simply a rectangular array of numbers with m rows and n columns. There

will be studied some: types of matrices, algebra of matrices. It is also studied how to find

the inverse of a matrix, how to use a matrix and its inverse to solve a linear system of

equations, and how to find the determinant of a matrix and use it to solve a linear system

of equations. [12 hrs]

Part C – Derivatives and integrals

Derivatives mean that if 𝑓: 𝑥 → 𝑦 is a function, the derivative of a function 𝑓 at a point

𝑥0 written 𝑓′(𝑥0); is given by

𝑓′(𝑥0) = lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
, If this limit exists and finite. There will be studied the

derivatives of usual functions, implicit derivatives, derivatives of trigonometric functions,

derivatives of exponential and logarithm functions. Graphical of exponential and

logarithm functions. While integrals means that if 𝑓(𝑥) function defined at some interval,

let 𝐹(𝑥) be another function such that 𝐹′(𝑥) = 𝑓(𝑥), 𝐹(𝑥) called an infinite integral of

𝑓(𝑥) and is written as the following form ∫ f(x)dx = F(x)) + C. [12 hrs].

Part D – Interest

Interest is the rental fee charged by a lender to a business or an individual for the use of

money. There will be studied simple and compound interests. Simple interest means that

the interest is calculated only once for the entire time period of the loan. At the end of

the time period, the borrower repays the principal plus the Interest . while compound

interest means that means that the interest is calculated more than once during the time

period of the loan. [9 hrs].

Learning and Teaching Strategies

Strategies
1.Explain the topic in detail by the teacher by writing the topic and explaining it on the

board and other teaching aids

17

2. Discussion during the lecture period

3. Doing homework

4. See the websites of the subject

Student Workload (SWL)

Structured SWL (h/sem) 102 Structured SWL (h/w) 7

Unstructured SWL (h/sem) 98 Unstructured SWL (h/w) 6

Total SWL (h/sem) 200

Module Evaluation

As
Time/Number Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5 and 10 LO #1, #2 and #10, #11

Assignments 2 10% (10) 2 and 12 LO #3, #4 and #6, #7

Projects / Lab. 1 10% (10) Continuous All

Report 1 10% (10) 13 LO #5, #8 and #10

Summative

assessment

Midterm Exam 2hr 10% (10) 7 LO #1 - #7

Final Exam 3hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1 Introduction - Sequences

Week 2 Arithmetic sequences and their partial sims

Week 3 Geometric sequences and their partial sums

Week 4 Series

Week 5 Matrices and algebra of matrices

Week 6 Inverse of matrices

Week 7 Solving linear system of equations by using inverse of matrices

Week 8 Determinant and using it to solve linear system of equations

Week 9 Derivatives

Week 10 Derivatives of trigonometric, exponential, logarithm functions

Week 11 Integrals

Week 12 Integral of trigonometric, exponential, logarithm functions

Week 13 Interest and simple interest

18

Week 14 Compound interest

Week 15 Present and future values of an annuity

Week 16 Preparatory week before the final Exam

Learning and Teaching Resources

 Text Available in the Library?

Required Texts Cheryl Cleaves, Margie Hobbs and Jeffry Noble Yes

Recommended

Texts

James Stewart , Lothar Redlin and Saleem Watson

Robert Brechner and George Bergeman
yes

Websites

 Grading Scheme

Group Grade Marks % Definition

Success Group

(50 - 100)

A - Excellent 90 - 100 Outstanding Performance

B - Very Good 80 - 89 Above average with some errors

C - Good 70 - 79 Sound work with notable errors

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (45-49) More work required but credit awarded

F – Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

19

Computer Skills

1. Course Name:

Computer Skills

2. Course Code:

3. Semester / Year:

First semester

4. Description Preparation Date:

13 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

75

7. Course administrator's name (mention all, if more than one name)

 Name:

 Email:

8. Email: Course Objectives

Course Objectives This course aims at teaching students how to use a variety of computer

applications as tools to improve students’ performance in school, increase

their future productivity in the work place and enhance their level of critical

thinking. Students will use computer networks and applications to locate,

evaluate, and use information, create written documents and oral

presentations. This course will assist students in understanding the

underlying concepts of these technologies and provide project-oriented

learning opportunities. The goal is for students to become independent

users of information, computer technology and library resources.

9. Teaching and Learning Strategies

Strategy The primary approach for delivering this module will focus on

fostering active student engagement in exercises, while

simultaneously enhancing their critical thinking abilities. This will be

accomplished through a combination of classroom and laboratory

sessions, interactive tutorials, and the incorporation of captivating

20

sampling activities to facilitate hands-on learning experiences for the

students.

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning

method

Evaluation

method

 The student will

acquire fundamental

computer skills that

can be effectively

applied to data

processing and

presentation tasks.

This includes gaining

proficiency in

essential computer

operations, such as

file management,

utilizing productivity

tools, and navigating

digital interfaces.

Through practical

application, the

student will develop

the ability to handle

and manipulate data,

as well as create

compelling

presentations.

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

Microsoft Office 2013 Visual Quickstart Guideby Steve Schwartz

Main references

(sources)

Recommended

books and

Gary B. Shelly, Misty E. Vermaat (2010). Microsoft Office 2010: Brief.

Cengage Learning. OR any ECDL, ICDL or IC3 books

21

references

(scientific journals,

reports...)

Electronic

References,

Websites

https://www.microsoft.com

First Year - Second Semester

Programming II

1. Course Name:

Programming II

2. Course Code:

CS106

3. Semester / Year:

2nd Semester / 2024-2025

4. Description Preparation Date:

1/10/2024

5. Available Attendance Forms:

Lectures

6. Number of Credit Hours (Total) / Number of Units (Total)

4 / 141

7. Course administrator's name (mention all, if more than one name)

 Name: Dr. Salah F. Saleh
 Email: aldarraji@uobasrah.edu

8. Email: Course Objectives

Course
Objectives

Here are some module aims typically associated with a Programming II course.
These aims describe the overarching goals and objectives of the course:

1. This course covers basic concepts and techniques for programming
including: repetition statements (while and for).

2. In this course the students can learn how to deal with arrays.
3. The programming II aims to learn how to understand the strings.

22

9. Teaching and Learning Strategies

Strategy The key is to move from concrete examples to abstract concepts and back again,
constantly reinforcing the "why" behind each topic.
Overarching Teaching Philosophy

 Code-Alongs & Live Coding: Don't just show finished code. Build programs
live from scratch. This models the thought process, including debugging
and problem-solving.

 Predict, Run, Investigate: For a given code snippet, ask students to:
1. Predict the output. 2. Run the code (or you run it). 3. Investigate why it
produced that output. This builds critical analysis skills.

 Scaffolded Projects: Design projects where Week 5's work becomes a
module for Week 7's, which is integrated into Week 14's final project.

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject name Learning
method

Evaluation
method

15 45

At the end of this
course, students
should be able to
design, write and
test c++ program to
implement a
working solution to
a given problem.

 Repetition

 while Looping
structure

 do..while

 Nested Control
Structures

 Arrays

 2D Arrays

 Array as
parameter

 Strings

 Array of string

 Structures
 Compare the
structure with the
arrays

 Access field of
structure

 Fields Assigning
values

Lectures
Lab.

 Quizzes

 Assignment

 Projects

 Report

11. Course Evaluation

 Quizzes

 Assignment

 Projects

 Report

 Midterm Exam

 Final Exam

23

12. Learning and Teaching Resources

 1. Problem solving with c++ by Walter Savitch, 7th edition,2009.
2. C++: The Complete Reference by Herbert Schildt, 4th edition, 2003

 A first book of c++ by Gary Bronson, 4th edition, 2012 by Gary
Bronson

Discrete Structures

1. Course Name:

Discrete Structures

2. Course Code:

3. Semester / Year:

Second semester

4. Description Preparation Date:

13/9/2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

125

7. Course administrator's name (mention all, if more than one name)

 Name: Dr. Shatha Falih Hendi
 Email:shatha.falih@uobasrah.edu.iq
8. Email: Course Objectives

Course Objectives 1. We can develop our mathematical ability

2. Discrete mathematic is the gateway to more advanced courses in all

24

part of math.

3. Discrete mathematics provides the math foundations for many

computer science courses

4. Discrete mathematics contains the necessary math back ground for
solving problems in operation research, chemistry, and engineering.

9. Teaching and Learning Strategies

Strategy 1. Convergent and divergent thinking.

2. Project-based learning.

3. Experiential learning.

4. Peer teaching.

5. Inquiry-based learning.

6. Problem-based learning.

7. Reciprocal teaching.

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject
name

Learning
method

Evaluation
method

1. formulate solutions

for selected

mathematical

problem

2. Apply objective

mathematical

reasoning to

systems composed

of discrete objects.

3. Assess

mathematical

proofs.

4. Interpret situations

that have a

predetermined

sequence of actions

that depend on a

limited sequence of

events.

5. categorize all

possible outcomes

for a series of

events, or all

possible collections

of a set of objects;

6. diagram

25

hierarchical

relationships

between individual

entities within a

given situation

using relations; and

7. Diagram

hierarchical

relationships

between individual

entities within a

given situation

using function.

8. apply Trees of

mathematical or

system entities as

tools in computer

science to solve

various real-world

problems; and

Apply Graph of
mathematical or
system entities as
tools in computer
science to solve
various real-world
problems.

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks
(curricular books, if any)

Essential Discrete Mathematics for Computer Science, by Harry
Lewis and Rachel Zax, Princeton University Press , ASIN: B07H5384J5,
2019.

Main references (sources)

Recommended books
and references
(scientific journals,
reports...)

Discrete Structures, Logic, and Computability by James L. Hein, Jones &
Bartlett Learning; 4 edition, 2015.

Electronic References,
Websites

https://www.cs.cornell.edu

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&field-author=Harry+Lewis&text=Harry+Lewis&sort=relevancerank&search-alias=digital-text
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&field-author=Harry+Lewis&text=Harry+Lewis&sort=relevancerank&search-alias=digital-text
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=Rachel+Zax&text=Rachel+Zax&sort=relevancerank&search-alias=digital-text
https://www.cs.cornell.edu/

26

Second Year - First Semester

Object Oriented Programming I

Module Information

Module Title Object oriented programming I Module Delivery

Module Type Core Theory

 ☒ Lecture

 ☒ Lab

 ☐ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code

ECTS Credits 8

SWL (hr/sem)

Module Level UGx11 2 Semester of Delivery 1

Administering Department cs College IT

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 01/06/2024 Version Number 1.0

Relation with other Modules

Prerequisite module None Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

27

 Module Aims

THIS COURSE WILL PROVIDE A BASIC UNDERSTANDING OF THE METHODS AND

TECHNIQUES OF DEVELOPING A SIMPLE TO MODERATELY COMPLEX WEB SITE. USING

THE CURRENT STANDARD WEB PAGE LANGUAGE, STUDENTS WILL BE INSTRUCTED

ON CREATING AND MAINTAINING A SIMPLE WEB SITE. AFT ER THE FOUNDATION

LANGUAGE HAS BEEN ESTABLISHED, THE AID OF AN WEB EDITOR WILL BE

INTRODUCED. THIS COURSE WILL PROVIDE A RIGOROUS TREATMENT OF OBJECT -

ORIENTED CONCEPTS (DESIGN AND IMPLEMENTATION OF OBJECTS, CLASS

CONSTRUCTION AND DESTRUCTION, ENCAPSULATION, INHERITANCE, AND

POLYMORPHISM) USING JAVA AS AN EXAMPLE LANGUAGE.

Module Learning

Outcomes

DEVELOPMENT OF SOUND PROGRAMMING AND DESIGN SKILLS, PROBLEM

SOLVING AND MODELING OF REAL-WORLD PROBLEMS FROM SCIENC E,

ENGINEERING, AND ECONOMICS USING THE OBJECT-ORIENTED PARADIGM.

Indicative Contents

Indicative content includes the following.

1 Programming style

2 Basic statements with looping and repetitions

3 One dimensional Arrays

4 Two dimensional Arrays

5 Classes and methods

6 Constructors, Variable types, Overloading

7 UML diagrams

8 Programming by contract: preconditions, postconditions and invariants

9 Exception Handling

10 Polymorphism

11 Encapsulation

12 Inheritance

13 Designing interfaces

Learning and Teaching Strategies

Strategies

Type something like: The main strategy that will be adopted in delivering this module is

to encourage students’ participation in the exercises, while at the same time refining

and expanding their critical thinking skills. This will be achieved through classes,

interactive tutorials and by considering type of simple experiments involving some

sampling activities that are interesting to the students.

Student Workload (SWL)

Structured SWL (h/sem) 102 Structured SWL (h/w) 7

Unstructured SWL (h/sem) 98 Unstructured SWL (h/w) 6.5

Total SWL (h/sem) 200

Module Evaluation

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

28

Formative

assessment

Quizzes 2 10% (10) 5, 10 LO #1, 2, 10 and 11

Assignments 2 10% (10) 2, 12 LO # 3, 4, 6 and 7

Projects / Lab. 1 10% (10) Continuous

Report 1 10% (10) 13 LO # 5, 8 and 10

Summative

assessment

Midterm Exam 2 hr 10% (10) 7 LO # 1-7

Final Exam 2hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1 Programming style

Week 2 Basic statements with looping and repetitions

Week 3 One dimensional Arrays and Two dimensional Arrays

Week 4 Classes and methods

Week 5 Classes and methods

Week 6 Constructors, Variable types

Week 7 Types of constructors

Week 8 Overloading

Week 9 UML diagrams

Week 10 Programming by contract: preconditions

Week 11 Programming by contract: postconditions and invariants

Week 12 Exception Handling

Week 13 Introduction to Inheritance, Encapsulation

Week 14 Polymorphism

Week 15 Designing Interfaces

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Week Material Covered

Week 1 Lab 1: Programming style,Basic statements with looping and repetitions

Week 2 Lab 2: One dimensional Arrays

Week 3 Lab 3: two dimensional Arrays

Week 4 Lab 4: Classes and methods

29

Week 5 Lab 5: Constructors, Variable types,, Overloading

Week 6 Lab 6: Programming by contract: preconditions,postconditions and invariants

Week 7 Lab 7: Polymorphism,Encapsulation,Inheritance

Learning and Teaching Resources

 Text
Available in the

Library?

Required Texts
C. Thomas Wu (2010). An Introduction to Object-Oriented

Programming with Java. Fifth Edition. McGraw-Hill.
Yes

Recommended Texts
2] Herbert Schildt (2007). Java: The Complete Reference.

Seventh Edition. McGraw-Hill.
No

Websites

Grading Scheme

Group Grade Marks (%) Definition

Success Group

(50 - 100)

A - Excellent 90 - 100 Outstanding Performance

B - Very Good 80 - 89 Above average with some errors

C – Good 70 - 79 Sound work with notable errors

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (45-49) More work required but credit awarded

F – Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

30

Probability and Statistics

1. Course Name:

Probability and Statistics

2. Course Code:

201

3. Semester / Year:

First semester

4. Description Preparation Date:

13\9\2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

125

7. Course administrator's name (mention all, if more than one name)

 Name:
 Email:

8. Email: Course Objectives

Course Objectives 

9. Teaching and Learning Strategies

Strategy

10. Course Structure

31

Week Hours Required Learning
Outcomes

Unit or subject
name

Learning
method

Evaluation
method

 1. Understand the

vocabulary of

probability and

statistics .

2. Understanding the

nature of statistics as

an integrated system

of knowledge.

3. Developing student’s

statistical concepts.

4. An attempt to reach

the concepts of

probability and

statistics .

The ability to solve
complex statistical
problems.

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks (curricular
books, if any)

Book of probability method

Main references (sources) The complete reference probability basic

Recommended books and
references (scientific journals,
reports...)

Electronic References, Websites

32

Second Year - Second Semester

Object Oriented Programming II

Module Information

Module Title Object oriented programming II Module Delivery

Module Type Core Theory

 ☒ Lecture

 ☒ Lab

 ☐ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code

ECTS Credits 8

SWL (hr/sem)

Module Level UGx11 2 Semester of Delivery 1

Administering Department Cs College It

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Module Leader’s Qualification

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 01/06/2024 Version Number 1.0

Relation with other Modules

Prerequisite module None Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

33

 Module Aims

THIS COURSE WILL PROVIDE A BASIC UNDERSTANDING OF THE METHODS AND

TECHNIQUES OF DEVELOPING A SIMPLE TO MODERATELY COMPLEX WEB SITE. USING

THE CURRENT STANDARD WEB PAGE LANGUAGE, STUDENTS WILL BE INSTRUCTED

ON CREATING AND MAINTAINING A SIMPLE WEB SITE. AFT ER THE FOUNDATION

LANGUAGE HAS BEEN ESTABLISHED, THE AID OF AN WEB EDITOR WILL BE

INTRODUCED. THIS COURSE WILL PROVIDE A RIGOROUS TREATMENT OF OBJECT -

ORIENTED CONCEPTS (DESIGN AND IMPLEMENTATION OF OBJECTS, CLASS

CONSTRUCTION AND DESTRUCTION, ENCAPSULATION, INHERITANCE, AND

POLYMORPHISM) USING JAVA AS AN EXAMPLE LANGUAGE.

Module Learning

Outcomes

Introducing advanced entity programming.

➢ How to use objects within programming as a modern concept and develop

students' ability to programmatically

➢ Enhancing the student's ability to think in abstract terms when solving computer

science problems and diversity in solution

problems in different ways and how to relate them to reality

➢ Addressing advanced new concepts in programming such as multithreading,

graphical user interface, and others.

Indicative Contents

Indicative content includes the following.

1-Wrapper classes

2-Inner classes

3-Multithreading

4-Generics

5-GUI design

 6-Data base access

7-Distribution

Learning and Teaching Strategies

Strategies

Type something like: The main strategy that will be adopted in delivering this module is

to encourage students’ participation in the exercises, while at the same time refining

and expanding their critical thinking skills. This will be achieved through classes,

interactive tutorials and by considering type of simple experiments involving some

sampling activities that are interesting to the students.

Student Workload (SWL)

Structured SWL (h/sem) 102 Structured SWL (h/w) 7

Unstructured SWL (h/sem) 98 Unstructured SWL (h/w) 6.5

Total SWL (h/sem) 200

Module Evaluation

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Quizzes 2 10% (10) 5, 10 LO #1, 2, 10 and 11

34

Formative

assessment

Assignments 2 10% (10) 2, 12 LO # 3, 4, 6 and 7

Projects / Lab. 1 10% (10) Continuous

Report 1 10% (10) 13 LO # 5, 8 and 10

Summative

assessment

Midterm Exam 2 hr 10% (10) 7 LO # 1-7

Final Exam 2hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1 Review of OOP Fundamentals

Week 2 Encapsulation and Inheritance

Week 3 Polymorphism and Abstraction

Week 4 Wrapper classes

Week 5 Wrapper classes

Week 6 Inner classes

Week 7 Inner classes

Week 8 Multithreading

Week 9 Multithreading

Week 10 Generics

Week 11 Generics

Week 12 GUI design

Week 13 GUI design

Week 14 Data base access

Week 15 Distribution

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Week Material Covered

Week 1 Lab 1:Wrapper classes

Week 2 Lab 2: Inner classes

Week 3 Lab 3: -Multithreading

Week 4 Lab 4: Generics

Week 5 Lab 5: GUI design

35

Week 6 Lab 6: Data base access

Week 7 Lab 7: Distribution

Learning and Teaching Resources

 Text Available in the Library?

Required Texts
C. Thomas Wu (2010). An Introduction to Object-Oriented

Programming with Java. Fifth Edition. McGraw-Hill.
Yes

Recommended Texts
2] Herbert Schildt (2007). Java: The Complete Reference.

Seventh Edition. McGraw-Hill.
No

Websites

 Grading Scheme

Group Grade Marks (%) Definition

Success Group

(50 - 100)

A - Excellent 90 - 100 Outstanding Performance

B - Very Good 80 - 89 Above average with some errors

C – Good 70 - 79 Sound work with notable errors

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (45-49) More work required but credit awarded

F – Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

36

Visual Programming

1. Course Name:

Visual Programming

2. Course Code:

3. Semester / Year:

First semester

4. Description Preparation Date:

13 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

75

7. Course administrator's name (mention all, if more than one name)

 Name:

 Email:

8. Email: Course Objectives

37

Course Objectives 1. Ability to demonstrate knowledge of interface design principles and

be able to apply them in a visual programming environment.

2. The student should have knowledge of Object Oriented Concepts

and how to implement them in a visual programming environment.

9. Teaching and Learning Strategies

Strategy Readings, self-learning, panel discussions.

- Classroom exercises and activities.

- Guiding students to some websites to benefit from them to develop abilities.

- Holding research seminars through which some problems are explained and

analyzed and the mechanism for finding solutions.

- The main strategy that will be adopted in delivering this module is to

encourage students’ participation in the exercises, while at the same time

refining and expanding their critical thinking skills.

- This will be achieved through classes, interactive tutorials and by considering

type of simple experiments involving some sampling activities that are

interesting to the students

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning

method

Evaluation

method

A- Cognitive goals

1.Transforming the

vision and path of

traditional

programming

concepts towards

visual programming

2.Expanding the

student's

knowledge from

the idea of

scattered small

programs to an

integrated

application

3.Expanding the

student's

38

knowledge of

Object Oriented

4.Expanding the

student's

knowledge towards

programming the

use of sound,

images and video

for presentation

requirements

B - The soft skills

objectives of the

course.

1. Developing

the student's

skills in

searching for

ideas to

present as

proposals for

discussion to

implement

simplified

projects

2. Developing

the student's

programming

skills through

implementing

some of the

ideas

presented and

discussed,

such as:

Programming some

games or educational

programs in a smooth

and useful review

manner.

11. Course Evaluation

39

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

Main references

(sources)

Recommended

books and

references

(scientific journals,

reports...)

The Complete Reference Visual Basic .NET

Programming Visual Basic .NET

An Introduction to Programming Using Visual Basic 2012

Electronic

References,

Websites

Computation theory

1. Course Name:

Computation theory

2. Course Code:

3. Semester / Year:

second semester

4. Description Preparation Date:

13 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

125

7. Course administrator's name (mention all, if more than one name)

40

 Name:

 Email:

8. Email: Course Objectives

Course

Objectives

The aim of this course is to introduce students to the fundamental area of

computer science which enables students to focus on the study of abstract

models of computation.

 These abstract models allow the students to assess via formal reasoning what

could be achieved through computing when they are using it to solve problems in

science and engineering.

The goal is to allow them to answer fundamental questions about problems, such

as whether they can or not be computed.

The course introduces basic computation models and their properties. The

students will be able to express computer science problems as mathematical

statements and to formulate proofs.

9. Teaching and Learning Strategies

Strategy - Readings, self-learning, panel discussions.

- Classroom exercises and activities.

- Guiding students to some websites to benefit from them to develop abilities.

- Holding research seminars through which some problems are explained and

analyzed and the mechanism for finding solutions.

Type something like: The main strategy that will be adopted in delivering this

module is to encourage students’ participation in the exercises, while at the same

time refining and expanding their critical thinking skills. This will be achieved

through classes, interactive tutorials and by considering type of simple experiments

involving some sampling activities that are interesting to the students.

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning

method

Evaluation

method

  Knowledge
and
understanding
:

 Clarifying the
basic concepts in
computational
theory through a

41

set of tools.
 Gaining skills in

problem-solving.
 Acquisition of

basic skills as an
introduction to
building
languages.

 Acquisition of
theoretical
concepts to deal
with RE's, DFA's,
NFA's, Stack's,
Turing machines,
and Grammars.

 Subject-
specific skills:

 The ability to
design (FAs, NFAs,
Grammar,
languages
modelling, small
compilers basics).

 The ability to
think about
solving the
problem
according to
specific rules.

 Writing scientific
reports

Know the comparison

between (Natural and

Formal Languages).

11.Course Evaluation

12. Learning and Teaching Resources

Required

textbooks

(curricular

42

books, if

any)

Main

references

(sources)

(Michael Sipser), Introduction to the Theory of computation (Third Edition

).

Recommend

ed books

and

references

(scientific

journals,

reports...)

Theory of Computation Simplified, (Varsha H. PatilVaishali S. PawarSwati A.

Bhavsar), 2022.

Electronic

References,

Websites

https://elc.uobasrah.edu.iq/enrol/index.php?id=72

43

Database Concepts & Design

1. Course Name:

Database Concepts & Design

2. Course Code:

CSITCS209

3. Semester / Year:

2024 - 2025

4. Description Preparation Date:

1/9/2025

5. Available Attendance Forms:

Regular attendance

6. Number of Credit Hours (Total) / Number of Units (Total)

150/3

7. Course administrator's name (mention all, if more than one name)

 Name: Iman Mohsen Hassan
 Email: iman.hassan@uobasrah.edu.iq

8. Email: Course Objectives

Course
Objectives

 The objective of this course is to introduce students to database
management systems. It helps the student to present an actual
practical project on realistic interaction and acquisition of skills by
collecting information and dealing with a real institution through open
discussion with the professor and his fellow students. Topics include

1. Data, Information, and File system
2. Database and database users
3. Database system concepts and architecture
4. Data modeling using the Entity Relationship Diagram (ERD)
5. The relational data model and relational data constraints
6. Functional dependencies and normalization for relational databases
7. The Relational Algebra,
8. Relational database design for ER to relational mapping
9. Organization records in the file
9. Disk storage, basic file structure and hashing,
10. SQL schema definition, constraints, queries and views.
11. Acquisition of skills by using some functions of MSAccess.

9. Teaching and Learning Strategies

Strategy The main strategy that will be adopted in delivering this module is to encourage
students’ participation in the exercises, while at the same time refining and
expanding their thinking skills. This will be achieved through classes, Labs. and
interactive discussions.

44

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject
name

Learning
method

Evaluation
method

1 5 Introduction to
Database

Data, Information,
Data Base (DB),
Relational Data
Base (RDB), Data
Base Management
System (DBMS)

Theory
Lecture
Lab

2 5 Characteristics of
Database,
Advantages and
Disadvantages

Phase1, Phase2,
ER Diagram, Main
components of ER
Diagram, Entities,
Entity Attributes,
Domain

Theory
Lecture
Lab

Assignments
Lab.
(homework)

3 5 Main phases of
database design

Primary Key,
Foreign Keys,
Types of Relation
Ships, Phase3,
Phase4

Theory
Lecture
Lab

Assignments
Lab.
(homework)

4 5 Constructing an
ER model

Attributes Types,
Single,
Multivalued,
Compound,
Derived, Stored,
Key & Optional
Attribute.

Theory
Lecture
Lab

Assignments
Lab.
(homework)

5 5 ER Diagram
Symbols and
Notations

Entity, Weak Entity,
Attribute,
Multivalued
Attribute, Derived
Attribute, Key
Attribute,
Relationship.

Theory
Lecture
Lab

Quizzes

6 5 Cardinality and
Ordinality

How to Draw ER
Diagrams, ER
Diagram Best
Practices,
Exercises.

Theory
Lecture
Lab

Assignments
Lab.
(homework)

7 5 THE RELATIONAL
ALGEBRA

Unary Relational
Operations:
SELECT and
PROJECT,
Sequences of
Operations and
the RENAME
Operation

Theory
Lecture
Lab

Assignments
Lab.
(homework)

8 5 THE RELATIONAL
ALGEBRA

Relational Algebra
Operations from
Set Theory:

Theory
Lecture
Lab

Assignments
Lab.
(homework)

45

 A. UNION,
INTERSECTION,
and MINUS
B. The CARTESIAN
PRODUCT (CROSS
PRODUCT)
Operation

9 5 THE RELATIONAL
ALGEBRA

Binary Relational
Operations: JOIN
and DIVISION
1. The Join
Operation
A. Inner join,
Variations of JOIN
(The EQUIJOIN and
NATURAL JOIN)

Theory
Lecture
Lab

Assignments
Lab.
(homework)

10 5 THE RELATIONAL
ALGEBRA

B. Outer join: Left
Outer Join, Right
Outer Join
Precedence of
relational
Operations
2. The Division
Operation

Theory
Lecture
Lab

Quizzes

11 5 Files and Records Records and
Record Types,
Fixed Length
Records,
Formatting records
of a file of Fixed
length records,
Variable Length
Records,
Formatting records
of a file of
variable-length
records (Other
options),
Formatted a file of
records with
optional fields,
Formatting A
repeating field,
Formatting file that
includes records of
different types

Theory
Lecture
Lab

Assignments
Lab.
(homework)

12 5 Organizing
records in the file
Organizing Files
on Disk

Record Blocking
and Spanned vs Un
spanned Records
Allocating File
Blocks on Disk:

 Assignments
Midterm
Exam

46

Contiguous
allocation, Linked
allocation, Indexed
allocation

13 5 File Headers , Files of
Unordered
Records (Heap
Files), Files of
Ordered Records
(Sorted Files)

Theory
Lecture
Lab

Assignments
Lab.
(homework)

14 5 Hashing
Techniques
Hashing Function

Hash table, The
idea behind
hashing
Direct,
Subtraction, &
Modulo Division
Hashing

Theory
Lecture
Lab

Assignments
Lab.
(homework)

15 7 Preparatory week
before the final
Exam

 Lecture
Lab

11. Course Evaluation

As
Time/Number

Weight

(Marks)
Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 10
LO

#1,2,3,4,5,6,7,8

Assignments 1 5% (5) 12
LO

#1,2,3,4,5,6,7,8

Assignments

Lab.
1 10% (10) Continuous

Midterm

Exam
2hr 25% (10) 8,12

LO

#12,3,4,5,6,7,8

Summative

assessment

Final Exam 3hr 35% (50) 16 All

Final Lab.

Exam
1hr 15%(15) 16 All

Total assessment
100% (100

Marks)

12. Learning and Teaching Resources

Required
textbooks
(curricular
books, if any)

• Database Concepts 6th Edition, David M. Kroenke,David J. Auer

Main
references
(sources)

• Database System Concepts Fourth Edition” by Abraham Silberschatz Henry F.
Korth S. Sudarshan , McGraw-Hill ISBN 0-07-255481-9

47

Recommended
books and
references
(scientific
journals,
reports...)

• Access 2013 the missing manual, Matthew macdonald
• FUNDAMENTALS OF Database Systems 6th EDITION, Ramez Elmasri

Electronic
References,
Websites

https://link.springer.com/book/10.1007/978-3-540-48399-1

48

Computational Thinking

1. Course Name:

Computational Thinking

2. Course Code:

CT101

3. Semester / Year:

1st Year / 1st Semester

4. Description Preparation Date:

14/9/2025

5. Available Attendance Forms:

In-class / Online

6. Number of Credit Hours (Total) / Number of Units (Total)

3 Credit Hours / 2 Units (Theory + Practical)

7. Course administrator's name (mention all, if more than one name)

 Name: Dr.Murtaja Ali Saare
 Email:murtaja.sari@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives • Develop students’ ability to apply computational

thinking to solve real-world problems.

• Introduce problem decomposition, pattern

recognition, abstraction, and algorithm design.

• Enhance logical reasoning and creativity in problem-

solving.

• Provide students with practical skills for algorithmic

thinking and digital solution design.

9. Teaching and Learning Strategies

Strategy • Interactive lectures with discussions.

49

• Problem-based learning (PBL).

• Hands-on programming labs and exercises.

• Group projects and peer collaboration.

• Case studies and real-world problem-solving examples.

10. Course Structure

Week Hours Required
Learning
Outcomes

Unit or subject name Learning
method

Evaluation
method

1 2 Understand
course goals
and CT
concepts

Introduction to
Computational
Thinking

Lecture &
Discussion

Quiz

2 2 Apply
decomposition
to complex
problems

Problem
Decomposition

Lecture +
Exercise

Assignment

3 2 Identify
patterns in
data/problems

Pattern Recognition Lecture +
Case Study

Quiz

4 2 Apply
abstraction to
simplify
problems

Abstraction Lecture +
Practical

Assignment

5 2 Design step-by-
step solutions

Algorithm Design
Basics

Lecture +
Lab

Assignment

6 2 Understand
pseudocode
and flowcharts

Representing
Algorithms

Lab +
Practice

Quiz

50

7 2 Apply problem-
solving
strategies in
coding

Basic Programming for
CT

Lab +
Hands-on

Practical Test

8 2 Develop
teamwork skills

Group Project
(Midterm)

Group Work Project
Evaluation

9 2 Apply CT in
science and
engineering

CT Applications I Lecture +
Case Study

Quiz

10 2 Apply CT in
social sciences
and daily life

CT Applications II Lecture +
Discussion

Assignment

11 2 Evaluate
algorithms
(efficiency &
correctness)

Algorithm Evaluation Lecture +
Lab

Practical Test

12 2 Practice
iterative
problem-
solving

Debugging and
Refinement

Lab + Peer
Work

Assignment

13 2 Apply CT in
interdisciplinary
projects

CT in Real-World
Scenarios

Group Work Project

14 2 Review and
integrate CT
skills

Revision & Integration Seminar Participation

51

15 2 Demonstrate
full
understanding

Final Project
Presentation

Project
Work

Project &
Report

11. Course Evaluation

• Quizzes: 15%

• Assignments: 20%

• Practical Labs: 15%

• Midterm Project: 20%

• Final Project & Presentation: 30%

12. Learning and Teaching Resources

Required textbooks (curricular
books, if any)

Wing, J. (2017). Computational Thinking. MIT Press.

Main references (sources) Selby, C., & Woollard, J. (2013). Computational

Thinking: The Developing Definition.

Recommended books and
references (scientific journals,
reports...)

Denning, P. 009). Beyond Computational Thinking.

Communications of the ACM.

Electronic References, Websites https://www.computationalthinking.org,
https://csunplugged.org, https://scratch.mit.edu

Third Year - First Semester

Artificial Intelligence

1. Course Name:

52

Artificial Intelligence

2. Course Code:

3. Semester / Year:

First / 2024-2025

4. Description Preparation Date:

5. Available Attendance Forms:

Class learning/ E-learning

6. Number of Credit Hours (Total) / Number of Units (Total)

7. Course administrator's name (mention all, if more than one name)

 Name: Asmaa Shareef
 Email: asmaa.shareef@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives  Learn how to train a computer to think experimentally in an
intelligent way.

 Learn how intelligent programming works.

 Learn how the Prolog program works.
9. Teaching and Learning Strategies

Strategy • Readings, self-study, and discussion groups
• Exercises and activities in the classroom and science lab
• Directing students to websites for their use
• The main strategy used in teaching this unit is to encourage students to
participate in exercises, while honing and expanding their critical thinking
skills.

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject
name

Learning
method

Evaluation
method

First 4 Introduction to
Artificial
Intelligence
and General
Programming
Concepts

Introduction to
Artificial
Intelligence +
Introduction to
Structured
Programming

Theoretical
and practical

General
questions and
discussion

Second 4 Introduction to
Artificial
Intelligence

AI characteristics,
goals, applications,
and problems
+Definition of
variables, data

Theoretical
and practical

General
questions and
discussion

53

and General
Programming
Concepts

types, and
variables in the
Prolog language

Third 4 Knowledge
Representation
and Transaction
Analysis in Prolog

The concept of a
knowledge base
and its
representation
methods
+ Logical and
mathematical
operations

Theoretical
and practical

General
questions and
discussion

Fourth 4 Representing
knowledge and
applying logical
relationships

Studying types of
knowledge
representation in
AI
+ Examples of
logical relational
programming

Theoretical
and practical

General
questions and
discussion or
exam

Fifth 4 General questions
and discussion

Studying theorems
in AI
+ Examples of
programming
mathematical
relationships

Theoretical
and practical

General
questions and
discussion

Sixth 4 Study of theorems
and application of
mathematical
relationships

Applying the
theorem to a set of
examples
+ Applying the
Prolog language to
solve
mathematical
problems and
series

Theoretical
and practical

General
questions and
discussion

Seventh 4 Clarity and some
rules of induction

Studying
mathematical
deduction and
induction methods
+ Applying the
Prolog language to
solve
mathematical
problems and
sequences

Theoretical
and practical

General
questions and
discussion

Eighth 4 Problem spaces,
search methods,
and the general
structure of lists in
Prolog

Blind Search and
Mining Search
+ Introduction to
Lists

Theoretical
and practical

General
questions and
discussion

Ninth 4 Blind search and
list programming

Depth-first,
breadth-first
search

Theoretical
and practical

General
questions and
discussion

54

+ List programming
in Prolog

Tenth 4 Excavation
research and
deletion and
addition
operations in lists

Hill Climbing
Search, Best
Search First
+ Programming
Add/Delete
Operations

Theoretical
and practical

General
questions and
discussion

Eleventh 4 Exploratory
research
and various
programs in the
lists

A*+ Encourage
branching,
specification, and
research using
different programs
using menus.

Theoretical
and practical

General
questions,
discussion
and exam

Twelfth 4 Artificial
Intelligence Issues
and the Concept of
Belonging

Solving problems
using AI methods
+ Programming the
relationship of
belonging

Theoretical
and practical

General
questions and
discussion

Thirteenth 4 Artificial
Intelligence Issues
and Applications of
Belonging
Relationships

Solve problems
using AI methods
+ Various programs
using member

Theoretical
and practical

General
questions,
discussion
and exam

Fourteenth 4 Expert Systems
And the Concept of
List Merge
Relationship
Append

Basic concepts and
components,
building a
knowledge hall,
and inference
techniques
+ Programming a
list merge
relationship
(append)

Theoretical
and practical

General
questions and
discussion

Fifteenth 4 Expert systems and
append
applications

Determinants in
expert systems and
some of their
applications
+ Various programs
using append

Theoretical
and practical

General
questions and
monthly exam

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks
(curricular books, if
any)

Stuart Russel, Peter Norvig, "Artificial Intelligence: A Modern Approach",
3th edition, Prentice-Hall, 2009.

Main references
(sources)

1. E. Charniak, D. McDermott, "Introduction to Artificial
Intelligence", 4th edition, Addison Wisely, 2000.

55

2. Ivan Bratko, "Prolog Programming for Artificial Intelligence", 4th
edition, Pearson Education, 2011.

3. George F. Luger, “Artificial Intelligence: Structures and
Strategies for Complex Problem Solving”, 6th edition, Addison
Wesley 2008.

Recommended
books and
references (scientific
journals, reports...)

https://www.journals.elsevier.com/artificial-intelligence

Electronic
References, Websites

https://download-internet-pdf-ebooks.com/88-1-library-books

Web Programming I

1. Course Name:

https://www.journals.elsevier.com/artificial-intelligence
https://download-internet-pdf-ebooks.com/88-1-library-books

56

Web Programming I

2. Course Code:

3. Semester / Year:

2ND year

4. Description Preparation Date:

10/9/2025

5. Available Attendance Forms:

Daily Attendance Sheet

6. Number of Credit Hours (Total) / Number of Units (Total):15

7. Course administrator's name (mention all, if more than one name)

 Name:Prof.Dr.Raad A. Muhajjar
 Email:Raad.muhajjar@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives The objectives of this program are to:

 Build Foundational Web Development Skills
o Provide students with a strong understanding of HTML, CSS, and

JavaScript as the core building blocks of modern web development.

 Enable Practical Application
o Equip students to design, develop, and publish functional, interactive,

and visually appealing websites.

 Promote Best Practices
o Develop awareness of web standards, accessibility guidelines,

responsive design principles, and coding conventions.

 Foster Problem-Solving and Creativity
o Encourage students to apply logical thinking and creativity in solving

design and programming challenges.

 Prepare for Advanced Learning and Careers
o Lay the groundwork for advanced courses in web technologies,

software development, and related fields.
o Provide transferable skills relevant to the professional world, such as

teamwork, critical thinking, and digital literacy.

9. Teaching and Learning Strategies

Strategy The Web Programming I course adopts a variety of teaching and learning strategies
to ensure students develop both theoretical understanding and practical skills:

1. Lectures (Theory Delivery)
o Provide foundational knowledge of HTML, CSS, and JavaScript.
o Use multimedia presentations and live coding demonstrations.

57

2. Hands-On Laboratory Sessions
o Conduct practical exercises in computer labs to apply lecture concepts.
o Guide students through coding tasks, debugging, and small projects.
3. Project-Based Learning (PBL)
o Assign individual and group projects (e.g., building a personal portfolio site).
o Encourage creativity, problem-solving, and application of best practices.
4. Active and Collaborative Learning
o Use pair programming, group discussions, and peer code reviews.
o Encourage teamwork and knowledge sharing.
5. E-Learning and Online Resources
o Integrate Learning Management Systems (LMS) for assignments, quizzes, and

resources.
o Provide supplementary tutorials, coding sandboxes (e.g., CodePen, JSFiddle),

and video lessons.
6. Formative Assessments and Feedback
o Use short quizzes, coding exercises, and in-class activities for continuous

evaluation.
o Provide timely feedback to help students improve progressively.
7. Self-Directed Learning
o Encourage students to explore web development tools, online documentation,

and communities.
o Promote independent problem-solving and lifelong learning habits.
8. Demonstrations and Case Studies
o Showcase real-world websites and applications to highlight best practices.
o Analyze case studies of good vs. poor web design and coding practices.

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject name Learning
method

Evaluation
method

1 3

Understand course
overview and web
development
basics

Introduction to Web
Programming &
Internet Concepts

Lecture +
Discussion

Participation

2 3
Describe HTML
structure and basic
tags

HTML Basics:
Elements, Headings,
Paragraphs, Links

Lecture + Lab
Quiz + Lab
exercises

3 3

Create structured
web pages with
lists, images, and
tables

HTML Lists, Images,
Tables

Lecture + Lab Lab exercises

4 3
Implement forms
and input controls

HTML Forms and
Input Elements

Lecture + Lab
Lab exercises +
Quiz

5 3
Apply CSS styling to
HTML elements

CSS Basics: Selectors,
Properties, Colors

Lecture + Lab Lab exercises

6 3
Design page layout
using CSS

CSS Box Model,
Margins, Padding,
Borders

Lecture + Lab Lab exercises

7 3
Implement
advanced CSS

CSS Positioning,
Flexbox, Grid

Lecture + Lab
Lab exercises +
Quiz

58

styling and
positioning

8 3
Apply learned
concepts in a small
project

Midterm Project:
Simple Web Page

Project-Based
Learning

Midterm
Project
Evaluation

9 3
Add interactivity
with JavaScript

JavaScript Basics:
Variables, Data
Types, Operators

Lecture + Lab Lab exercises

10 3

Control program
flow using
conditions and
loops

JavaScript:
Conditionals & Loops

Lecture + Lab Lab exercises

11 3
Manipulate web
page elements
dynamically

JavaScript DOM
Manipulation

Lecture + Lab Lab exercises

12 3
Handle events and
validate forms

JavaScript Events &
Form Validation

Lecture + Lab
Lab exercises +
Quiz

13 3
Apply functions
and arrays in
JavaScript

JavaScript Functions
& Arrays

Lecture + Lab Lab exercises

14 3
Integrate HTML,
CSS, and JavaScript
in a full project

Capstone Project
Development

Project-Based
Learning

Project
Progress
Evaluation

15 3
Present final
projects and review
all topics

Capstone Project
Presentation &
Course Review

Presentation +
Discussion

Final Project
Evaluation +
Participation

11. Course Evaluation

 Continuous Assessment: Quizzes and lab exercises are conducted weekly to provide
timely feedback and track progress.

 Project-Based Assessment: Both midterm and final projects assess students’ ability to
integrate theory into practical web development tasks.

 Participation: Students are encouraged to actively engage in labs, discussions, and peer
reviews.

 Flexibility: Evaluation methods may be adjusted to suit online or blended learning
environments, ensuring fairness and accessibility.

12. Learning and Teaching Resources

Required textbooks
(curricular books, if
any)

Main references
(sources)

"JavaScript for Modern Web Development: Building a Web Application
Using HTML, CSS, and JavaScript"
Publisher: Skillsoft, 2020
Overview: Complete guide for learning web development from basics to
building a web application using HTML, CSS, and JavaScript.

Recommended
books and
references (scientific
journals, reports...)

"JavaScript: The Definitive Guide, 7th Edition"
Author: David Flanagan
Publisher: O'Reilly Media, 2020
Overview: Complete reference for JavaScript covering the latest features
and best practic

59

Electronic References,
Websites

W3Schools
Description: Educational website with interactive tutorials and examples
for HTML, CSS, and JavaScript.
Link: W3Schoos

Third Year - Second Semester

Compiler Constructions

60

1. Course Name:

Compiler Constructions

2. Course Code:

3. Semester / Year:

Second semester

4. Description Preparation Date:

1 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

7. Course administrator's name (mention all, if more than one name)

 Name: Dr Adala M. Chyaid

 Email:

8. Email: Course Objectives

Course Objectives The course illustrates how the theory of language translation introduced in
preliminary courses can be applied to the construction of compilers and
interpreters. The unit covers building compilers from scratch as well as
using compiler generators. In this process, the unit also identifies and
explores the key issues involved in compiler design. Constructing a
compiler/interpreter for a small language is an essential component of this
unit, enabling students to acquire the necessary skills.
1. Understanding the fundamental techniques used in compiler

construction, such as lexical analysis, top-down parsing, bottom-up
parsing, context-sensitive analysis, and intermediate code generation.

2. Understanding the essential data structures employed in compiler
construction, such as abstract syntax trees, symbol tables, three-
address code, and stack machines.

9. Teaching and Learning Strategies

Strategy Readings, self-learning, panel discussions.

- Classroom exercises and activities.

- Guiding students to some websites to benefit from them to develop abilities.

- Holding research seminars through which some problems are explained and

analyzed and the mechanism for finding solutions.

- The main strategy that will be adopted in delivering this module is to encourage

students’ participation in the exercises, while at the same time refining and

expanding their critical thinking skills.

61

- This will be achieved through classes, interactive tutorials and by considering type

of simple experiments involving some sampling activities that are interesting to the

students

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning

method

Evaluation

method

 Knowledge and

Understanding

1. Explain the

fundamental

concepts of

compilers and their

role in translating

high-level

programming

languages into

machine code.

2. Distinguish the

main phases of a

compiler:

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code

Generation

Code Optimization

Code Generation

3. Demonstrate

knowledge of data

structures and

algorithms used in

each phase (e.g.,

DFA, Parse Trees,

Symbol Tables).

Practical Skills

4. Design a simple

lexical analyzer

using tools such as

Lex or manual

programming.

5. Build a parser using

techniques such as

LL or LR parsing.

62

6. Implement symbol

tables and perform

semantic checking.

7. Generate

intermediate code

from a high-level

language program.

8. Apply basic code

optimization

techniques.

Cognitive Skills

9. Analyze a

compiled

program and

identify errors

(lexical, syntax,

semantic).

10. Compare

compilers and

interpreters.

11. Evaluate the

impact of code

optimization

techniques on

performance

and efficiency.

General Skills

12. Collaborate in

teams to

develop parts of

a mini-compiler.

13. Document and

explain the

steps of

compiler

development.

14. Solve

programming

problems using

compiler design

methodologies.

11. Course Evaluation

63

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

Main references

(sources)

Recommended

books and

references (scientific

journals, reports...)

The Complete Reference Visual Basic .NET

Programming Visual Basic .NET

An Introduction to Programming Using Visual Basic 2012

Electronic References,

Websites

Web Programming II

1. Course Name:

64

Web Programming II

2. Course Code:

3. Semester / Year:

2ND year

4. Description Preparation Date:

12/9/2025

5. Available Attendance Forms:

Daily Attendance Sheet

6. Number of Credit Hours (Total) / Number of Units (Total):15

7. Course administrator's name (mention all, if more than one name)

 Name:Prof. Dr. Raad A. Muhajjar
 Email:raad.muhajjar@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives The objectives of this course are:

1. Understanding PHP Basics: Learn the fundamentals of PHP programming

language, including syntax, variables, data types, operators, control

structures, and functions.

2. Web Development Concepts: Gain an understanding of web development

concepts such as client-server architecture, HTTP protocol,

request/response cycle, and the role of PHP in web development.

3. Working with HTML and CSS: Learn how to integrate PHP code within

HTML and CSS to create dynamic web pages. Understand how to

generate HTML content using PHP and manipulate CSS styles based on

dynamic conditions.

4. Handling Form Data: Explore techniques for handling form submissions

using PHP. Learn how to retrieve form data, validate and sanitize input,

and perform server-side form processing.

5. Working with Databases: Understand the basics of database

management systems and how to interact with databases using PHP.

Learn how to establish database connections, execute SQL queries, and

handle result sets.

6. Session and Cookies Management: Explore techniques for managing user

sessions and cookies using PHP. Learn how to create, store, and retrieve

session data, as well as how to implement user authentication and

authorization.

7. File Handling: Gain knowledge on file handling operations in PHP, such as

reading from and writing to files, uploading files, and manipulating file

metadata.

65

9. Teaching and Learning Strategies

Strategy The Web ProgrammingII course adopts a variety of teaching and learning
strategies to ensure students develop both theoretical understanding and practical
skills:

1. Lectures (Theory Delivery)
o Provide foundational knowledge of PHP, and DataBase.
o Use multimedia presentations and live coding demonstrations.
2. Hands-On Laboratory Sessions
o Conduct practical exercises in computer labs to apply lecture concepts.
o Guide students through coding tasks, debugging, and small projects.
3. Project-Based Learning (PBL)
o Assign individual and group projects (e.g., building a personal portfolio site).
o Encourage creativity, problem-solving, and application of best practices.
4. Active and Collaborative Learning
o Use pair programming, group discussions, and peer code reviews.
o Encourage teamwork and knowledge sharing.
5. E-Learning and Online Resources
o Integrate Learning Management Systems (LMS) for assignments, quizzes, and

resources.
o Provide supplementary tutorials, coding sandboxes (e.g., CodePen, JSFiddle),

and video lessons.
6. Formative Assessments and Feedback
o Use short quizzes, coding exercises, and in-class activities for continuous

evaluation.
o Provide timely feedback to help students improve progressively.
7. Self-Directed Learning
o Encourage students to explore web development tools, online

documentation, and communities.
o Promote independent problem-solving and lifelong learning habits.
8. Demonstrations and Case Studies
o Showcase real-world websites and applications to highlight best practices.
o Analyze case studies of good vs. poor web design and coding practices.

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or subject name Learning
method

Evaluation
method

1 3

Understand PHP
syntax, variables,
data types, and
operators

Introduction to PHP
Lecture +
Hands-on
coding

Short quiz +
coding
exercises

2 3

Apply control
structures, loops,
and functions in
PHP

Introduction to PHP
Lecture + Lab
work

Lab
assignment

3 3
Explain client-
server architecture
and HTTP protocol

Web Development
Basics

Lecture +
Discussion

Quiz

4 3

Demonstrate
request/response
cycle, HTML & CSS
basics, integrate

Web Development
Basics

Hands-on
coding +
Demo

Practical
exercise

66

PHP with
HTML/CSS

5 3

Create HTML forms
and handle
submissions with
PHP

Form Handling and
Validation

Lab work
Coding
assignment

6 3
Validate and
sanitize user input,
display form errors

Form Handling and
Validation

Lecture + Lab Lab test

7 3

Explain relational
databases and
establish DB
connection with
PHP

Database Interaction
Lecture + Lab
practice

Quiz + coding
exercise

8 3

Execute SQL
queries and
retrieve results
using PHP

Database Interaction Hands-on lab Coding project

9 3

Understand
sessions, cookies,
and manage user
sessions

Session
Management &
Authentication

Lecture + Lab
Quiz + coding
demo

10 3

Implement
authentication,
authorization, and
secure session
handling

Session
Management &
Authentication

Case study +
Lab

Coding project

11 3

Perform file
reading/writing,
handle file uploads
and validation

File Handling and
Uploading

Lab work
Practical
exercise

12 3
Manipulate file
metadata, directory
handling

File Handling and
Uploading

Lecture + Lab
Coding
assignment

13 3
Use APIs in PHP,
make API requests

Working with APIs
Lecture +
Demo

Quiz

14 3

Parse API
responses
(JSON/XML),
integrate external
APIs

Working with APIs Lab work Coding project

15 3

Present group
project and reflect
on learning
outcomes

Project
Presentations &
Wrap-up

Group work +
Discussion

Group
presentation

11. Course Evaluation

 Continuous Assessment: Quizzes and lab exercises are conducted weekly to provide
timely feedback and track progress.

 Project-Based Assessment: Both midterm and final projects assess students’ ability to
integrate theory into practical web development tasks.

67

 Participation: Students are encouraged to actively engage in labs, discussions, and
peer reviews.

Flexibility: Evaluation methods may be adjusted to suit online or blended learning environments,
ensuring fairness and accessibility.

 12. Learning and Teaching Resources

Required textbooks (curricular books, if any)

Main references
(sources)

Welling, L., & Thomson, L. (2017). PHP and MySQL Web Development (5th
ed.). Addison-Wesley.

Recommended
books and
references (scientific
journals, reports...)

Freeman, E., & Robson, E. (2020). Head First HTML and CSS (2nd ed.). O’Reilly.

Electronic
References, Websites

W3Schools
Description: Educational website with interactive tutorials and examples for
HTML, CSS, and JavaScript.
Link: W3Schoos

Operations Research

Module Information

68

Module Title Operations Research Module Delivery

Module Type Core ☒ Theory

 ☒ Lecture

 ☐ Lab

 ☐ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code UoB12345

ECTS Credits 8

SWL (hr/sem) 200

Module Level UGx11 Semester of Delivery

Administering Department Type Dept. Code College Type College Code

Module Leader Name e-mail Nasir.jasim@uobasrah.edu.iq

Module Leader’s Acad. Title Lecturer Module Leader’s Qualification Ph.D.

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 13/09/2025 Version Number 1.0

Relation with other Modules

Prerequisite module None Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

 Module Objectives

1. Modelling realistic problems with different mathematical formulas.

2. Finding a solution to any problem available in the labor market after modelling

it using different methods of solution.

3. Searching for the best solution to the problem and searching for the best

method used to deliver the product to the labor market.

Module Learning

Outcomes

Cognitive goals

1. Enable the student to identify problems in the labor market.

2. The student's ability to model realistic problems.

3. Enabling the student to solve any problem he encounters in the labor market

by converting it into a mathematical model and solving it using one of the

solutions.

Skill objectives for the course

 1. Work as a member of a team to solve any problem in the market.

2. Understanding mathematics through practice

Indicative Contents

Indicative content includes the following.

Part A – Linear Programming

 Constructing Linear Programming Models, Forms of Linear programming model, The

formulation of linear programming Model, Method of solution of Linear programming

Model. [8hrs]

69

Part B - Method of solution of Linear programming Model

 Graphical method, Simplex Method. [8 hrs]

Part C - Artificial Variable Technique, Duality in Linear Programming

Two Phase Method, Duality and Simplex Method [9 hrs]

Part D – Transportation Problems

 Method for Initial Basic Feasible Solution to a transportation problem, North-West

Corner Rule, Least Cost Method, Vogel's Approximation Method,

 Testing the initial basic feasible solution and obtaining the optimal solution, Stepping

Stone Method, Modified Distribution method. [10 hrs]

Part E – Assignment Problems [6 hrs]

Learning and Teaching Strategies

Strategies

Providing distinguished educational and research services that keep pace with local and

international quality standards in the fields of computer and informatics. These services

allow for preparing a distinguished, competitive graduate. In addition to that, the

completion of high-end scientific research and effective participation in community

service are key to building a knowledge-based economy.

Student Workload (SWL)

Structured SWL (h/sem)

102

Structured SWL (h/w)

7

Unstructured SWL (h/sem)

98

Unstructured SWL (h/w)

6.5

Total SWL (h/sem)

200

Module Evaluation

As
Time/Number Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5 and 10 LO #1, #2 and #10, #11

Assignments 2 10% (10) 2 and 12 LO #3, #4 and #6, #7

Projects / Lab. 1 10% (10) Continuous All

Report 1 10% (10) 13 LO #5, #8 and #10

Summative

assessment

Midterm Exam 2hr 10% (10) 7 LO #1 - #7

Final Exam 3hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1 Introduction – Linear programming Models, Forms of Linear programming Models

70

Week 2 Application Examples, Graphical Methods for Solving Linear Programming Models

Week 3 Simplex Method

Week 4 Solving Linear Programming Problems by the Simplex Method

Week 5 Artificial Variable Technique

Week 6 Duality in Linear Programming Problem

Week 7 Duality and Simplex Method

Week 8 Assignment 1

Week 9 Transportation Problems

Week 10 Initial Basic Feasible Solution of Transportation Problems

Week 11 Optimal Solution of Linear Programming Problems

Week 12 Unbalanced Transportation Problem

Week 13 Assignment 2

Week 14 Assignment Problems

Week 15 The Hungarian Method for Assignment Problem

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Week Material Covered

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Learning and Teaching Resources

 Text Available in the Library?

Required Texts
Makebest Decisions Through Operations Research,

S.D.SHARMA
Yes

Recommended

Texts

Prem Kumar Gupta, D.S. HIRA, S.CHAND

 بحوث العمليات))مفهوما وتطبيقا(تأليف الدكتور حامد سعد نور الشمرت

Yes

Websites

 Grading Scheme

71

Group Grade Marks % Definition

Success Group

(50 - 100)

A - Excellent 90 - 100 Outstanding Performance

B - Very Good 80 - 89 Above average with some errors

C - Good 70 - 79 Sound work with notable errors

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (45-49) More work required but credit awarded

F – Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

Computer Organization and Architecture

Module Information

72

Module Title Computer Organization and Architecture Module Delivery

Module Type Core ☒ Theory

 ☒ Lecture

 ☒ Lab

 ☐ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code UoB12345

ECTS Credits 5

SWL (hr/sem) 125

Module Level UGx11 2 Semester of Delivery 1

Administering Department Type Dept. Code College Type College Code

Module Leader Name e-mail E-mail

Module Leader’s Acad. Title Professor Module Leader’s Qualification Ph.D.

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval Date 01/06/2023 Version Number 1.0

Relation with other Modules

Prerequisite module None Semester

Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents

Module Aims

Here are some module aims typically associated with a Computer Organization &
Architecture course. These aims describe the overarching goals and objectives of the
course:

1. To provide students with a solid understanding of the fundamental concepts and
principles of computer organization and architecture.

2. To introduce students to the components and operation of a computer system,
including the CPU, memory, and I/O subsystems.

3. To familiarize students with the Von Neumann architecture and its role in
modern computer systems.

4. To develop students' understanding of digital logic and Boolean algebra,
enabling them to design and analyze combinational and sequential logic circuits.

5. To introduce students to different number systems and their representations in
digital systems.

6. To explore the principles of data representation and arithmetic, including signed
number representations and arithmetic operations.

7. To introduce students to the concepts and techniques of instruction-level
parallelism and pipelining.

8. To enable students to analyze and resolve hazards and dependencies in
pipelined architectures.

9. To provide students with a comprehensive understanding of memory systems,
including cache memory organization and virtual memory concepts.

10. To introduce students to I/O systems, interfaces, and programming techniques.
11. To familiarize students with microprocessor architecture and programming,

including instruction set architecture (ISA) and assembly language
programming.

73

12. To develop students' ability to evaluate and optimize the performance of
computer systems.

13. To introduce students to parallel processing and multicore architectures,
including the principles of cache coherence and synchronization.

14. To explore emerging trends and technologies in computer organization and
architecture, such as quantum computing and cloud computing.

This module aims to provide a broad overview of the goals and objectives of a Computer
Organization & Architecture course.

Module Learning

Outcomes

Here are some module learning outcomes that are typically associated with a Computer
Organization & Architecture course. These outcomes represent the knowledge, skills,
and competencies that students are expected to achieve upon completing the course:

1. Understand the fundamental components and principles of computer
organization and architecture.

2. Demonstrate knowledge of the Von Neumann architecture and its components.
3. Explain the instruction execution cycle and the role of the CPU.
4. Analyze and design combinational and sequential logic circuits.
5. Demonstrate an understanding of number systems and their representations in

digital systems.
6. Explain the principles of data representation and arithmetic operations.
7. Understand the concepts and techniques of instruction-level parallelism and

pipelining.
8. Analyze and resolve hazards and dependencies in pipelined architectures.
9. Describe the organization and hierarchy of memory systems, including cache

memory.
10. Understand virtual memory concepts and address translation mechanisms.
11. Explain I/O systems, interfaces, and programming techniques.
12. Understand the principles of microprocessor architecture and programming.
13. Analyze and evaluate the performance of computer systems.
14. Understand the principles and techniques of parallel processing and multicore

architectures.
15. Identify and discuss emerging trends and technologies in computer organization

and architecture.
These module learning outcomes reflect the core knowledge and skills that students are
expected to gain throughout the course.

9.

Indicative Contents

Here are some indicative contents for a Computer Organization & Architecture course
targeted at beginners. These contents cover the fundamental concepts and topics
typically included in such a course:

1. Introduction to Computer Systems
 Overview of computer organization and architecture
 Basic components of a computer system
 Von Neumann architecture and its principles

2. Number Systems and Digital Logic
 Binary, decimal, and hexadecimal number systems
 Boolean algebra and logic gates
 Combinational and sequential logic circuits

3. Data Representation
 Binary representation of integers and characters
 Signed number representation (sign-magnitude, one's complement,

two's complement)

74

 Floating-point representation
4. Central Processing Unit (CPU)

 CPU components and organization
 Instruction execution cycle
 CPU performance and factors affecting it.

5. Memory Systems
 Memory hierarchy and its importance
 Primary memory (RAM, ROM) and secondary storage (hard drives,

solid-state drives)
 Caches and cache organization

6. Instruction Set Architecture (ISA)
 Overview of instruction sets and their formats.
 Addressing modes and instruction types
 Instruction decoding and execution.

7. Input/Output Systems
 I/O devices and interfaces
 I/O communication methods (programmed I/O, interrupt driven. I/O,

DMA)
 I/O performance and bottlenecks

8. Processor Design and Organization
 Basic CPU design principles (fetch-decode-execute cycle)
 Instruction pipelining and hazards.
 Control unit and microprogramming

9. Computer Arithmetic
 Binary arithmetic operations (addition, subtraction, multiplication,

division)
 Fixed-point and floating-point arithmetic
 Arithmetic logic unit (ALU) design

10. Introduction to Assembly Language Programming
 Basics of assembly language programming
 Instruction syntax and addressing modes.
 Simple assembly programs and debugging

11. Introduction to Parallel Processing
 Concepts of parallel processing and its importance
 Flynn's taxonomy (SISD, SIMD, MISD, MIMD)
 Multicore processors and their organization

12. Emerging Trends in Computer Architecture
 Introduction to emerging technologies (quantum computing,

neuromorphic computing)
 Cloud computing and virtualization
 Energy-efficient computing and green computing concepts

These indicative contents provide beginners with a solid foundation in computer
organization and architecture.

Learning and Teaching Strategies

Strategies

When teaching a Computer Organization & Architecture course to beginners, it's
important to adopt strategies that cater to their foundational understanding and
gradually build their knowledge and skills. Here are some effective learning and teaching
strategies for beginners in a Computer Organization & Architecture course:

1. Visual Aids and Analogies: Use visual aids such as diagrams, charts, and
illustrations to simplify complex concepts. Analogies comparing computer

75

components to familiar real-world objects can make abstract ideas more
relatable and easier to understand.

2. Step-by-Step Approach: Break down complex topics into smaller, manageable
steps. Present the material in a sequential manner, building upon previously
covered concepts. This helps beginners grasp the fundamentals before moving
on to more advanced topics.

3. Direct Activities: Provide firsthand activities that allow beginners to interact
with hardware components or simulation software. This can include assembling
simple computer systems, performing basic circuit simulations, or writing
simple programs. Direct activities reinforce learning and make abstract
concepts more tangible.

4. Practical Examples: Use practical examples and real-life scenarios to
demonstrate the relevance and application of the concepts being taught. Relate
the material to everyday situations or commonly used technologies to help
beginners connect theory to practice.

5. Scaffolding: Provide scaffolding support by gradually reducing assistance as
students gain confidence and proficiency. Start with guided exercises and
gradually increase the level of complexity and autonomy. This helps beginners
develop their critical thinking skills and independent thinking.

6. Interactive Discussions: Encourage interactive discussions to promote active
engagement and peer learning. Beginners can ask questions, share their
perspectives, and learn from their classmates' experiences. This fosters a
supportive learning environment where beginners can build their
understanding collaboratively.

7. Concept Mapping and Summarizing: Encourage beginners to create concept
maps or summaries of the material covered. Concept maps visually organize the
relationships between different concepts, while summaries help reinforce
understanding and retention.

8. Concrete Examples: Use concrete examples and familiar scenarios to explain
abstract concepts. Relate computer organization and architecture to everyday
experiences, such as explaining how a CPU functions like the brain of a
computer or how cache memory is like a high-speed storage closet.

9. Incremental Assessments: Break assessments into smaller, incremental tasks to
evaluate and reinforce learning along the way. This can include quizzes, short
assignments, or mini projects that gradually increase in complexity as beginners
progress through the course.

10. Encourage Questions: Create a supportive environment that encourages
beginners to ask questions without hesitation. Answer questions patiently and
provide explanations in a clear and accessible manner. This helps beginners
clarify their doubts and deepen their understanding.

11. Provide Additional Resources: Offer supplementary resources, such as
textbooks, online tutorials, and reference materials, to support beginners'
learning outside the classroom. These resources can provide alternative
explanations, additional examples, and further practice opportunities.

12. Regular Feedback and Guidance: Provide timely and constructive feedback on
assignments and assessments to guide beginners' progress. Highlight their
strengths and provide specific suggestions for improvement to help them grow
and build confidence.

By employing these strategies, you can create an inclusive and supportive learning
environment for beginners in a Computer Organization & Architecture course. Adjust

76

the pace and depth of the course to accommodate their learning needs and gradually
build their knowledge and skills in the subject.

Student Workload (SWL)

Structured SWL (h/sem) 45 Structured SWL (h/w)

Unstructured SWL (h/sem) 80 Unstructured SWL (h/w)

Total SWL (h/sem) 125

Module Evaluation

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 10 LO #1, 2, 10 and 11

Assignments 2 10% (10) 2, 12 LO # 3, 4, 6 and 7

Projects / Lab. 1 10% (10) Continuous

Report 1 10% (10) 13 LO # 5, 8 and 10

Summative

assessment

Midterm Exam 2 hr 10% (10) 7 LO # 1-7

Final Exam 2 hr 50% (50) 16 All

Total assessment 100% (100 Marks)

 Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1
Introduction to Computer Systems

 Basic components of a computer system
 Overview of computer architecture and organization

Week 2

Number Systems and Digital Logic
 Binary, decimal, and hexadecimal number systems
 Logic gates and Boolean algebra
 Combinational and sequential logic circuits

Week 3

Basic Computer Organization
 Von Neumann architecture
 CPU, memory, and I/O subsystems
 Instruction execution cycle

Week 4

Machine Language and Assembly Programming
 Machine language instructions
 Assembly language programming concepts
 Introduction to an assembly language (e.g., MIPS, x86)

Week 5

Central Processing Unit (CPU) Design
 CPU components and their functions
 Instruction set architecture (ISA)
 CPU Datapath and control unit

Week 6

1. Memory Systems
 Memory hierarchy
 Cache memory organization and mapping techniques
 Virtual memory concepts

77

Week 7 Mid-term Exam

Week 8
Microprocessors and Microcontrollers

 Introduction to microprocessors and microcontrollers
 Architecture and features of popular microprocessors (e.g., Intel 8086, ARM Cortex-M)

Week 9

Instruction Set Architecture (ISA)
 Types of instruction formats
 Addressing modes
 Assembly language programming for the chosen ISA

Week 10

Input/Output Systems
 I/O interfaces and devices
 Interrupts and DMA (Direct Memory Access)
 I/O programming techniques

Week 11

Computer Arithmetic
 Binary and hexadecimal arithmetic
 Integer and floating-point representations
 Arithmetic operations and algorithms

Week 12

Pipelining and Superscalar Techniques
 Pipelined CPU architecture
 Instruction pipelining and hazards.
 Superscalar and out-of-order execution

Week 13 Advanced Topics in Computer Architecture
 Parallel processing and multiprocessors

Week 14
Advanced Topics in Computer Architecture

 Memory management and protection

 Performance evaluation and optimization techniques
Week 15 General Discussion

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Week Material Covered

Week 1 Lab 1:

Week 2 Lab 2:

Week 3 Lab 3:

Week 4 Lab 4:

Week 5 Lab 5:

Week 6 Lab 6:

Week 7 Lab 7:

Learning and Teaching Resources

 Text Available in the Library?

Required Texts
"Computer Organization and Architecture: Designing for

Performance" by William Stallings:

78

 This textbook provides a comprehensive introduction to

computer organization and architecture, with a focus

on performance design principles. It covers topics such

as CPU organization, memory hierarchy, instruction set

architecture, and I/O systems. The book includes

numerous examples, illustrations, and exercises to

reinforce concepts.

Recommended Texts

"Structured Computer Organization" by Andrew S. Tanenbaum

and Todd Austin:

 This book provides a structured approach to computer

organization and architecture. It covers fundamental

concepts, including digital logic, data representation,

CPU organization, memory systems, and I/O systems.

The text emphasizes the importance of hierarchical

organization in computer systems and includes

numerous examples and exercises to reinforce learning.

Websites

 Grading Scheme

Group Grade Marks (%) Definition

Success Group

(50 - 100)

A - Excellent 90 - 100 Outstanding Performance

B - Very Good 80 - 89 Above average with some errors

C - Good 70 - 79 Sound work with notable errors

D - Satisfactory 60 - 69 Fair but with major shortcomings

E - Sufficient 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (45-49) More work required but credit awarded

F – Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

Fourth Year - First Semester

Mobile Applications Programming

79

1. Course Name:

Mobile Applications Programming

2. Course Code:

3. Semester / Year:

First semester

4. Description Preparation Date:

13/9/2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

7. Course administrator's name (mention all, if more than one name)

 Name: Dr. Shatha Falih Hendi
 Email: shatha,falih@uobasrah,edu.iq

8. Email: Course Objectives

Course Objectives 1. Learn about different smartphone platforms and the structure and
framework of the phone.
2. Learn programming and mobile app development.
3. Learn how to upload an app to the store to make it available for
use.
4. Learn how to monetize apps.

9. Teaching and Learning Strategies

Strategy 1- Monthly exams
2- Daily exams
3- Reports
4- Projects through which the student applies what they have learned from the
course
5- Daily lecture participation

10. Course Structure

Week Hours Required Learning
Outcomes

Unit or
subject name

Learning
method

Evaluation method

 1- The blackboard
2- A display screen to
display the lecture
using a presentation
application
3- Showing short clips
of films related to the
topics being covered

80

4- Motivating students
by asking questions
and opening up the
possibility of diverse
answers from
everyone to create
interactive discussions
during the lecture
5- Making students
feel the importance of
studying the material
- Encouraging team
spirit among them

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks
(curricular books, if
any)

Main references
(sources)

1-Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications:
Architecture,
Design, and Development, Prentice Hall, 2004.
2- Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
3- Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, 2010.
4- Christian Crumlish and Erin Malone, Designing Social Interfaces, O'Reilly
Media, 2009.

Recommended
books and
references (scientific
journals, reports...)

1-Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications:
Architecture,
Design, and Development, Prentice Hall, 2004.
2- Brian Fling, Mobile Design and Development, O'Reilly Media, 2009.
3- Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, 2010.
4- Christian Crumlish and Erin Malone, Designing Social Interfaces, O'Reilly
Media, 2009.

Electronic
References,
Websites

1- https://developer.android.com/training/index.html
2- www.coders-hub.com
3- http://www.javacodegeeks.com/category/android/
4- www.wrox.com

Computational Intelligence

1. Course Name:

Computational Intelligence

2. Course Code:

https://developer.android.com/training/index.html
https://developer.android.com/training/index.html
http://www.coders-hub.com/
http://www.javacodegeeks.com/category/android/
http://www.javacodegeeks.com/category/android/
http://www.wrox.com/

81

3. Semester / Year:

First semester

4. Description Preparation Date:

13 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

75

7. Course administrator's name (mention all, if more than one name)

 Name:

 Email:

8. Email: Course Objectives

Course Objectives The course is a research-based course and therefore focuses on leading

students to investigate the current state of research in Computational

Intelligent areas as well as to gain comprehensive theoretical knowledge from

scientific research about the basic concepts and features of CI methodologies

and approaches.

9. Teaching and Learning Strategies

Strategy The course is a research-based course and therefore focuses on leading students to

investigate the current state of research in Computational Intelligent areas as well

as to gain comprehensive theoretical knowledge from scientific research about the

basic concepts and features of CI methodologies and approaches.

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning

method

Evaluation

method

 Provide the student with

key vocabulary and help

to understand artificial

intelligence and

Computational

intelligence by

understand:

Optimization

Constrained,

unconstrained

optimization Parameter

space, function space,

and fitness space Local

82

and global optima Multi-

objective optimization

Classification / Learning

Classification (Supervised

Learning) Clustering

(Unsupervised Learning)

Reinforcement Learning

Control Systems

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

1. James M. Keller et al.,” Fundamentals of Computational Intelligence:

Neural Networks, Fuzzy Systems, and Evolutionary Computation“, Wiley-

IEEE Press, 2016.

2. Jiangjun Tang et al. “Simulation and Computational Red Teaming for

Problem Solving”, ch12: Computational Intelligence, Wiley-IEEE Press, pp.

219 – 240, 2020.

3. Jan Peters, “Computational Intelligence: Principles, Techniques and

Applications”, Computer Journal, 2007.

4. Mircea Eremia et al.,” Advanced Solutions in Power Systems: HVDC,

FACTS, and Artificial Intelligence’, ch17: Fuzzy Systems, Wiley-IEEE Press,

pp. 785 - 818, 2016.

Main references

(sources)

Recommended

books and

references (scientific

journals, reports...)

Electronic

References,

Websites

Fourth Year - Second Semester

Computer Security

1. Course Name:

Computer Security

83

2. Course Code:

3. Semester / Year:

Second semester

4. Description Preparation Date:

13 / 9 / 2025

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

75

7. Course administrator's name (mention all, if more than one name)

 Name:

 Email:

8. Email: Course Objectives

Course Objectives This course provides students with the most common cryptographic

algorithms and protocols and how to use cryptographic algorithms and

protocols to secure distributed applications and computer networks:

- Explain the objectives of information security.

 - Explain the importance and application of each of confidentiality,

integrity,

 authentication and availability.

- Understand various cryptographic algorithms.

- Understand the basic categories of threats to computers and

networks.

9. Teaching and Learning Strategies

Strategy Type something like: The main strategy that will be adopted in delivering this

module is to encourage students’ participation in the exercises, while at the same

time refining and expanding their critical thinking skills. This will be achieved

through classes, interactive tutorials and by considering types of simple

experiments involving some sampling activities that are interesting to the students.

10. Course Structure

Week Hours Required Learning Outcomes Unit or

subject

name

Learning

method

Evaluation

method

 By the end of the course,

students will be able to:

84

Understand the

Cryptography principles and

types.

Describe the computer

systems security issues.

Student will be able to

understand basic

cryptographic algorithms,

message

and security issues.

 Ability to identify

information system

requirements for both of

them, such as,

client and server.

 Ability to understand the

current issues towards

information security.

Apply security principles to

system design.

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks

(curricular books, if any)

William Stallings, "Cryptography and Network Security. Principle and

Practice", Fourth Edition, Principle Hall, USA, 2006.

Main references

(sources)

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,

"Handbook of Applied Cryptography", Fifth Edition , CRC Press, 2001.

Recommended books

and references

(scientific journals,

reports...)

Electronic References,

Websites

Knowledge Engineering

1. Course Name:

Knowledge Engineering

https://cacr.uwaterloo.ca/hac/authors/ajm.html
https://cacr.uwaterloo.ca/hac/authors/pvo.html
https://cacr.uwaterloo.ca/hac/authors/sav.html

85

2. Course Code:

3. Semester / Year:

Second semester

4. Description Preparation Date:

14 / 9 / 2025

5. Available Attendance Forms:

Attendance / Blended Learning (In-person, Online)

6. Number of Credit Hours (Total) / Number of Units (Total)

75 Hour

7. Course administrator's name (mention all, if more than one name)

 Name: Lec. Suhaib Abdulatif Abdulqader

 Email: Suhaib.alansarry@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives - Ability to demonstrate knowledge of the principles of Knowledge
Engineering and its applications.
- Students should have an understanding of Artificial Intelligence concepts
in a practical environment supported by applications.

9. Teaching and Learning Strategies

Strategy - Readings, self-learning, and discussion sessions.
- In-class exercises and activities.
- Directing students to selected websites to enhance their skills.
- Organizing research seminars to explain and analyze problems and explore
solution methods.
- The main strategy in teaching this unit is to encourage students to participate in
exercises, while developing and expanding their critical thinking skills.
- This will be achieved through classroom sessions, interactive lessons, and
studying simple experiments that include sample activities relevant to students’
interests.

10. Course Structure

Week Hours Required Learning Outcomes Unit or

subject

name

Learning

method

Evaluation

method

 - Define the concept of
knowledge, its types, and how
it is represented in intelligent
systems.
- Explain the difference
between data, information,
and knowledge.

86

- Acquire knowledge from
experts and different sources.
- Apply knowledge
representation techniques
such as rules, semantic
networks, frames, and
ontologies.
- Demonstrate reasoning
methods such as forward and
backward chaining.
- Build simple expert systems.
- Identify issues of
consistency, ambiguity, and
complexity in knowledge
representation.
- Use software tools related
to knowledge engineering.
- Analyze real-world problems
and select suitable knowledge
representation methods.
- Develop teamwork skills
through projects in designing
knowledge-based systems.

11. Course Evaluation

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

Main references

(sources)

Recommended

books and

references

(scientific journals,

reports...)

Kendal, Simon L., and Malcolm Creen. An introduction to knowledge

engineering. London: Springer London, 2007.

Electronic

References,

Websites

Communication Skills

1. Course Name:

Communication Skills

87

2. Course Code:

3. Semester / Year:

Fourth Year

4. Description Preparation Date:

14/9/2025

5. Available Attendance Forms:

In-person & Online

6. Number of Credit Hours (Total) / Number of Units (Total)

3 Credit Hours / 2 Units

7. Course administrator's name (mention all, if more than one name)

Name: Dr.Murtaja Ali Saare

 Email:murtaja.sari@uobasrah.edu.iq

8. Email: Course Objectives

Course Objectives - Develop students’ oral and written communication skills for academic and

professional contexts.

- Enhance listening and speaking abilities through interactive discussions

and presentations.

- Foster teamwork and collaboration skills in group settings.

- Build confidence in public speaking and argumentation.

- Introduce students to digital tools for effective communication.

9. Teaching and Learning Strategies

Strategy - Lectures and interactive discussions

- Group projects and collaborative tasks

- Case studies and role-playing

- Class presentations and debates

- Use of multimedia and ICT platforms

10. Course Structure

Week Hours Required Learning

Outcomes

Unit or subject

name

Learning method Evaluation

method

1 3 Understand basics

of communication

Introduction to

Communication

Lecture +

Discussion

Quiz

2–3 6 Apply verbal/non-

verbal

communication

skills

Verbal & Non-

Verbal

Communication

Role Play +

Practice

Participation +

Assignment

88

4–5 6 Develop effective

writing skills

Academic &

Professional

Writing

Writing

Workshops

Written

Assignment

6–7 6 Practice oral

communication

Public Speaking &

Presentations

Presentations Oral

Presentation

8 3 Demonstrate

listening &

feedback

Active Listening Interactive

Activities

Participation

9–10 6 Collaborate in

groups effectively

Teamwork & Group

Dynamics

Group Projects Group Report

+ Peer Review

11 3 Use ICT for

communication

Digital

Communication

Tools

Lab/Workshop Practical Task

12–13 6 Apply skills in real

context

Case Studies &

Simulations

Case Studies Assignment

14 3 Review &

Integration

Course Review Seminar Final Exam

11. Course Evaluation

- Class Participation & Attendance: 10%

- Assignments & Reports: 20%

- Presentations & Oral Activities: 20%

- Group Project: 20%

- Final Exam: 30%

12. Learning and Teaching Resources

Required textbooks

(curricular books, if

any)

Adler, R. B., & Elmhorst, J. M. (2019). Communicating at Work: Strategies for

Success in Business and the Professions. McGraw-Hill.

Main references

(sources)

Lucas, S. E. (2020). The Art of Public Speaking. McGraw-Hill.

Recommended

books and

references (scientific

journals, reports...)

Journals on communication studies and applied linguistics; Reports and case

studies from professional organizations (e.g., Toastmasters International).

Electronic

References,

Websites

www.communicationtoday.com

www.toastmasters.org

www.coursera.org/communication

