MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية							
Module Title	N	Mathematics (I)		Modu	ıle Delivery		
Module Type	Basic learning ac	tivities			☑ Theory		
Module Code		E111			⊠ Lecture □ Lab		
ECTS Credits		6			□ Tutorial		
SWL (hr/sem)		150		☐ Practical☐ Seminar			
Module Level		UGx11 1	Semester o	f Deliver	Delivery 1		
Administering Dep	partment	MAE	College	ENGINEERING			
Module Leader	Mohammed M	Nustafa	e-mail	moham	med.abedlhafd@	စ္ပြဲuobasrah.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Lea	der's Qu	ıalification	Ph.D.	
Module Tutor	Name (if availa	able)	e-mail	E-mail			
Peer Reviewer Name Name		Name	e-mail	E-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0		

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	This course reviews the basic ideas you need to start calculus for engineering, also for students intending to continue to more advanced courses in calculus and mathematics in general Topics include a brief review of functions, followed by discussion of limits, derivatives, and applications of differential calculus to real-world problem areas. An introduction to integration concludes the course, with a brief description of transcendental functions.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	A- Knowledge and Understanding A1. Illustrate the principle of calculus. A2. Gain the required mathematical skills to solve different problems. A3. Improve the essential skills to treat with different mathematical problems. A4. Study the principal criteria for modelling any industrial system mathematically. B. Subject-specific skills B1. Ability to solve mathematical problems. B2. Ability to analyze and resolve any mathematical problem. B3. Writing scientific reports. B4. Gain the required experience to deal with industrial systems mathematically.				
Indicative Contents المحتويات الإرشادية	1- The Cartesian Plane and Functions [10 hrs] The distance formula, lines, The slope and the equation of a line, Parallel and perpendicular lines, circles, Functions and their graphs, The Trigonometric Functions, Graphs of Trigonometric Functions. 2- The Limits and Continuity [15 hrs] Calculating Limits Using the Limit Laws, Properties of Limits, Limits of Trigonometric Function, Special Trigonometric Limits, L-Hopital's Rule Continuity, Properties of Continuous Function. 3- Differentiation [18 hrs] Definition of the Derivative, Differentiation Rules, Derivatives of Trigonometric Functions, The Chain Rule, Implicit Differentiation, Related Rates. 4- Applications of Differentiation [15 hrs] The First Derivative Test, Concavity and the Second Derivative Test, Curve Sketching, Optimization Problems, The mean value Theorem.				

Learning and Teaching Strategies					
	استر اتيجيات التعلم والتعليم				
	Reading and self-learning.				
	Training and activities during lecture.				
Strategies	HomeWorks.				
	Suggesting some websites for extra reading.				
	Discussions and workshops.				

Student Workload (SWL) الحمل الدراسي للطالب					
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation									
	تقييم المادة الدراسية								
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning				
		mber	vveigiit (ividiks)	vveek Due	Outcome				
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11				
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7				
assessment	Projects / Lab.								
	Report								
Summative	Midterm Exam	1.5 hr	20% (10)	7	LO # 1-7				
assessment	Final Exam	2hr	60% (50)	16	All				
Total assessm	Total assessment 100% (100 Marks)								

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

	Material Covered
Week 1	Point Sets and Intervals
Week 2	Inequalities
Week 3	The distance formula, lines, The slope and the equation of a line
Week 4	perpendicular lines, circles, Functions and their graphs
Week 5	The Trigonometric Functions, Graphs of Trigonometric Functions.
Week 6	Calculating Limits Using the Limit Laws, Properties of Limits,
Week 7	Limits of Trigonometric Function,
Week 8	Special Trigonometric Limits, L-Hopital's Rule Continuity, Properties of Continuous Function.
Week 9	Definition of the Derivative, Differentiation Rules
Week 10	Derivatives of Trigonometric Functions, The Chain Rule, Implicit Differentiation,
Week 11	Related Rates, The First Derivative Test,
Week 12	Concavity and the Second Derivative Test, Curve Sketching,
Week 13	Optimization Problems, The mean value Theorem.
Week 14	vectors in space, dot product, cross product
Week 15	Matrices and linear equations, Determinants, operation of Matrices.

	Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources

مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	Howard Anton, Irl Bivens, Stephen Davis -	Yes			
Required Texts	Calculus_ Early Transcendentals-Wiley (2016)	res			
December and ad Toute	Calculus-early-transcendentals-10th-ed-	Voc			
Recommended Texts	howard-anton-iril-bivens-stephen-davis-ebook	Yes			
Websites					

Grading Scheme مخطط الدر جات							
Group							
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Eng	gineering Drawin	ıg	Modu	ıle Delivery	
Module Type		Basic			☑ Theory	
Module Code		E112			□ Lecture□ Lab	
ECTS Credits		5			☐ Tutorial	
SWL (hr/sem)		125			⊠ Practical □ Seminar	
Module Level		UGx11 2	Semester o	f Delivery 1		1
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Dr. Dhia Chasi	b Ali	e-mail	dhai.ali@uobasrah.edu.iq		iq
Module Leader's	Acad. Title	Lecturer	Module Lea	ader's Qu	der's Qualification Ph.D.	
Module Tutor	Name (if availa	able)	e-mail E-mail			
Peer Reviewer Name		Name	e-mail	E-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents

	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	 To develop problem solving skills and understanding of Manufacturing schemes To understand projection, sectional views and Isometric Drawings This course deals with the basic concept of Engineering Drawings This is the basic subject for all Engineering schemes To understand how to read Engineering Schemes for Design 					
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Recognize how to deals with Engineering Drawings Study and understand engineering schemes in various fields Express engineering ideas and solutions in a manner commensurate with the illustrations Understand and apply the necessary parts to complement the various schemes Proper implementation of maps and blueprints for engineering projects Detect any error or deficiency in the plans of the various engineering projects. 					
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part A - Lines & Ellipse Types of Lines – Ellipse Drawing – Engineering Operations (15 hrs) Part B- Projection Presentation of views – dimensions- sectional views (45 hrs) Part C- Isometric Drawings Isometric Drawings (15 hrs)					

Learning and Teaching Strategies استراتیجیات التعلم و التعلیم				
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.			

Student Workload (SWL) الحمل الدراسي للطالب					
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.2		
Total SWL (h/sem) 125					

	Module Evaluation تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome						
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments						
assessment	Projects / Lab.	20	40%(40)	1-15	LO #1, 15		
	Report						
Summative	Midterm Exam	2 hr	20% (20)	7	LO # 1-7		
assessment	assessment Final Exam 2 hr 30% (30) 16 All						
Total assessme	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Types of lines				
Week 2	Engineering Operations				
Week 3	Ellipse Drawings				
Week 4	Projections – types of projections				
Week 5	Projection views				
Week 6	Projection views				
Week 7	Projection views				
Week 8	Projection views				

Week 9	Projection views
Week 10	Sectional Views
Week 11	Sectional Views
Week 12	Sectional Views
Week 13	Isometric Drawings
Week 14	Isometric Drawings
Week 15	Isometric Drawings
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text Library?				
Required Texts	Engineering Drawings Abd-Alrasol Alkhaffaf- University of Technology-Iraq-1990	Yes			
Recommended Texts	Machine Drawings By k. L. Narayana, New age international Publishers - 1994	Yes			
Websites					

	Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	(0 - 49) F – Fail راسب (0-44)		(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Module Title Applied Sciences Module Delivery					
Module Type		Core		☑ Theory		
Module Code		E113				
ECTS Credits		4	☐ Tutorial			
SWL (hr/sem)		100		☐ Seminar		
Module Level	UGx11 3 Semester of I		f Delivery	1		
Administering Department Type Dept. Code College			Type College Code			
Module Leader	Module Leader Munira Waheed Mahan e-mail mui				ah.edu.iq	

Module Leader's Acad. Title		Assistant Lecturer	Module Leader's Qualification		alification	MSc.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Na	Peer Reviewer Name		e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	Prerequisite module None Semester				
Co-requisites module	Co-requisites module None Semester				

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	 Provide a fundamental understanding of the principles and concepts of physics and chemistry and their application in engineering. Develop students' scientific inquiry skills, critical thinking, and problemsolving abilities through hands-on laboratory experiments and practical demonstrations. Foster an appreciation for the role of physics and chemistry in engineering disciplines and their impact on technological advancements. Enhance students' understanding of the interrelationship between physics, chemistry, and engineering, and their ability to apply scientific principles to engineering problems. Develop students' proficiency in experimental techniques, data analysis, and interpretation of scientific results. Cultivate an awareness of safety protocols and ethical considerations in conducting scientific experiments and handling hazardous materials. 				
Module Learning Outcomes	 Demonstrate a deep understanding of the fundamental principles and concepts of physics and chemistry as applied to engineering disciplines. Apply scientific reasoning, critical thinking, and problem-solving skills to analyze and solve complex engineering problems using principles from physics and chemistry. 				

3. Design and conduct experiments, analyze data, and draw appropriate الدراسية conclusions while adhering to safety protocols and ethical considerations. 4. Utilize mathematical and computational tools to model and simulate physical and chemical phenomena in engineering applications. 5. Communicate scientific ideas and findings effectively, both orally and in written form, to technical and non-technical audiences. 6. Collaborate effectively in interdisciplinary teams, demonstrating teamwork and leadership skills in solving engineering problems that involve physics and chemistry. 7. Demonstrate an awareness of the environmental, societal, and ethical implications of engineering practices that involve physics and chemistry. 8. Adapt and apply knowledge of physics and chemistry to address emerging challenges and advancements in engineering fields. 9. Continuously engage in self-directed learning and professional development to stay abreast of new developments in the field of applied sciences. 10. Demonstrate an appreciation for the role of physics and chemistry in fostering innovation, sustainable development, and technological advancements in engineering. Indicative content includes the following.

1. Principles of Physics:

Mechanics and motion, Thermodynamics, Waves and vibrations, Electricity and magnetism, Optics and light. [5 hrs]

2. Principles of Chemistry:

Atomic structure and periodic table, Chemical bonding and molecular structure, Chemical reactions and stoichiometry, States of matter and phase transitions, Acids, bases, and pH. [5 hrs]

3. Laboratory Techniques:

Safety protocols and laboratory procedures, Measurement and data analysis, Chemical synthesis and reactions, Spectroscopy and analytical techniques, Calibration and quality control. [5 hrs]

4. Engineering Applications:

Material properties and their relationship to physics and chemistry, Energy conversion and conservation principles, Environmental impact and sustainability considerations, Introduction to nanotechnology and materials science,

Indicative Contents

المحتوبات الإرشادية

Electrochemistry and corrosion control. [5 hrs]

5. Computational Methods:

Mathematical modeling and simulation techniques, Computational tools for data, analysis and visualization, Numerical methods for solving physics and chemistry problems, Computer-aided design and analysis software applications. [5 hrs]

6. Case Studies and Applications:

wave in Pipes.

Sound Waves: Power and intensity, relations of sound and temperature, Dopller Phenomenon. [5 hrs]

Thermal Chemistry / Chemical Kinetics, Exthothermic And Endothermic Reaction, heat of Formation, fuel and Watergas, Rocket Propulsions, Energy and collision, Water Treatments, Petroleum Refining. [8 hrs]

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Some common learning and teaching strategies include:

- 1. Traditional classroom lectures. Lectures may include multimedia presentations, demonstrations, and interactive discussions.
- 2. Practical laboratory sessions allow students to apply theoretical knowledge, develop experimental skills, and gain hands-on experience with scientific equipment and techniques.
- 3. Problem-solving Sessions: Facilitated problem-solving sessions encourage students to apply physics and chemistry principles to solve engineering problems. These sessions promote critical thinking, analytical skills, and the ability to apply theoretical knowledge in practical scenarios.

Strategies

Group Projects: Collaborative group projects enable students to work together on complex problems or research tasks. This encourages teamwork, communication, and the exchange of ideas while providing opportunities for students to apply physics and chemistry concepts in real-world contexts.

Guest Lectures and Industry Visits: Inviting experts from the industry or academia as guest lecturers and organizing visits to relevant industries or research facilities exposes students to real-world applications of physics and chemistry.

Online Resources and Learning Platforms: Utilizing online resources, interactive simulations, multimedia materials, and learning platforms enhance students' access to additional learning materials, promotes self-paced learning, and supports collaborative learning activities.

Student Workload (SWL)					
۱ اسبوعا	الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem)		Structured SWL (h/w)	_		
الحمل الدراسي المنتظم للطالب خلال الفصل	62	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	20	Unstructured SWL (h/w)	2.5		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	38	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.5		
Total SWL (h/sem)	100				
الحمل الدراسي الكلي للطالب خلال الفصل					

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

	Material Covered
Week 1	Atomic structure and Bonding, Chemical Bonding, Hybridization
Week 2	Electro-chemical Corrosion, Hydration Reaction.
Week 3	Thermal Chemistry / Chemical Kinetics, Exthothermic And Endothermic Reaction
Week 4	heat of Formation, fuel and Watergas, Rocket Propulsions, Energy and collision,
Week 5	Water Treatments, Petroleum Refining
Week 6	Hydrocarbons, Aromatic Compounds, Benzene Structure, Homologues of Benzene
Week 7	Reactions, Substitution of Benzene, Addition reaction, Poly-substitution in benzene ring, Reactions
Week 8	solids, crystalline solids types, crystalline structures, stress, strain
Week 9	Energy stored in stressed body
Week 10	Equation of Motion, pendulum, damping Motion
Week 11	Forced motion, Wave Motion
Week 12	longitudinal wave in Pipes
Week 13	Sound Waves: Power and intensity, relations of sound and temperature, Dopller Phenomeno.
Week 14	Dopller Phenomenon
Week 15	
Week 16	

Delivery Plan	(Weekly L	ab. Syllabus)
----------------------	-----------	---------------

المنهاج الاسبوعي للمختبر

Material Covered

Week 1	
Week 2	
Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

	Learning and Teaching Resources مصادر التعلم والتدريس	
	Text	Available in the Library?
Required Texts	Applied Chemistry and Physics, Robert A. Burke, 1 st Edition	No
Recommended Texts	Hand Book of Chemistry and Physics, W.M. Haynes	No
Websites	 https://www.studocu.com/ph/document/western-mindal psychology/applied-science-lecture-notes-1-10/22318862 https://www.youtube.com/watch?v=TRHny-fWcQw 	•

Grading Scheme				
	مخطط الدرجات			
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
,	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information

معلومات المادة الدراسية

Module Title	Engineering Mechanics /static		Modu	ıle Delivery		
Module Type	Basic learning ac	tivities			☑ Theory	
Module Code		MAE111				
ECTS Credits	6				☑ Tutorial	
SWL (hr/sem)		150			□ Practical□ Seminar	
Module Level	UGx11 4		Semester o	f Delivery 1		1
Administering Dep	partment MAE		College	ENGIN	ENGINEERING	
Module Leader	AZZAM DAWOOD HASSAN		e-mail	AZZAM	.HASSAN@UOBA	ASRAH.EDU.IQ
Module Leader's	Acad. Title	ASST. Professor	Module Lea	ader's Qu	ıalification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date 01/		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules			
	العلاقة مع المواد الدراسية الأخرى		
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية		
Module Aims	The aim of studying Engineering mechanics which includes the basics of static and	
أهداف المادة الدراسية	dynamic to provide the student with knowledge and ability to solve different engineering problems.	

	. Explain the principles of static equilibrium
	2. Use Free Body Diagrams to solve static problems involving components and pulley systems (P01, P02, P03, P04)
Module Learning	3. Solve problems relating to the forces in truss members using the method of joints and the method of sections.
Outcomes	4. Determine the centre of mass and centroids of Lines, areas and Volumes of simple and composite bodies
مخرجات التعلم للمادة الدراسية	5. Solve problems relating to hydrostatics including pressures on submerged surfaces, buoyancy and stability of floating objects.
الدراسية	6. Solve problems relating to dry friction, including inclined planes and screw threads.
	7. Solve problems relating to the work, equilibrium, potential energy and stability of a system
	8. Undertake an experiment as part of a group and report results.
Indicative Contests	Introduction to Engineering Mechanics, Operation with Forces, Force systems, components, moment: Resultant of Forces system Couple and Resultant, components, Equilibrium: Equilibrium in Two and Three Dimensions, free body
Indicative Contents المحتويات الإرشادية	diagram, Equilibrium Conditions. Centroids and Moments of Inertia: centroids of composite bodies, center of mass, Area moment of inertia, composite areas, radius
	of gyration, transfer of axes. Friction: frictional phenomena, applications. Trusses and Cables: Structures, Frame.

Learning and Teaching Strategies استراتیجیات التعلم و التعلیم				
Strategies	 Explanation and clarification through lectures. Display scientific materials with projectors: data show, smart boards, plasma screens. Self-learning through homework and mini-projects within the lectures. Graduation projects. 			

- 6- Scientific visits.
- 7- Seminars held in the department.
- 8- Summer training.

Assessment methods

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL)				
الحمل الدراسي للطالب				
Structured SWL (h/sem)	92	Structured SWL (h/w)	4	
الحمل الدراسي المنتظم للطالب خلال الفصل	32	الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem)	58	Unstructured SWL (h/w)	2	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	36	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation							
	تقييم المادة الدراسية						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (wanks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		

assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Introduction		
Week 2	Force system and components		
Week 3	Resultant (analytic method)		
Week 4	Resultant (parallelogram method)		
Week 5	Moment		
Week 6	Couple		
Week 7	Equilibrium		
Week 8	Centroid		
Week 9	Discussion and solution of home works		
Week 10	Moment of inertia		
Week 11	Friction		
Week 12	Structures		
Week 13	Frame and machine		
Week 14	Quiz		
Week 15	Discussion		

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1			
Week 2			
Week 3			
Week 4			

Week 5	
Week 6	
Week 7	

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	 J. L. Meriam and L. G. Kraige, 'Engineering Mechanics: Statics (V.1), 7th edition, Wiley 2012. 2.R.C. Hibbeler, Engineering Mechanics: STATICS (Thirteenth Edition), Prentice Hall 2004 	Yes		
Recommended Texts				
Websites				

Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Charles	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Prod	luction Engineer	ing	Modu	ıle Delivery	
Module Type		Core			☐ Theory	
Module Code		MAE112			Lecture Lab	
ECTS Credits		5			☐ Tutorial	
SWL (hr/sem)		125			☐ Practical☐ Seminar	
Module Level		UGx11 5	Semester o	of Delivery 1		1
Administering Dep	partment	Dept. of engineering materials	College	College of engineering		
Module Leader	Nuha Hadi Jas	im	e-mail	Nuha.ja	sim@uobasrah.e	edu.iq
Module Leader's	Acad. Title	Assist. Pro. Dr.	Module Lea	der's Qu	alification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail			
Scientific Committee Approval Date 01/06/2023		Version Nu	mber	1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

- 6. Understanding the mechanical properties of engineering materials and their significance in different applications.
- 7. Conducting mechanical tests such as tensile tests, impact tests, and hardness tests to assess material properties and behavior.
- 8. Understanding the production processes for ferrous metals, specifically cast iron and steel.
- 9. Studying different methods of producing cast iron, such as conversion, Martin method, and smelting electrolysis method.
- 10. Exploring the production methods for steel, including conversion, Martin method, and smelting electrolysis method.
- 11. Examining the production processes for non-ferrous metals, with a focus on copper, aluminum, lead, zinc, and tin.
- 12. Understanding the methods of purifying bauxite to obtain aluminum, including the use of electrolysis.
- 13. Studying the production methods for copper, including dry and wet methods.
- 14. Exploring the production processes for lead, zinc, and tin.
- 15. Learning about various methods used for forming plastic materials into desired shapes, such as injection molding, blow molding, and extrusion.
- 16. Gaining knowledge of ceramic materials and their properties.
- 17. Understanding the manufacturing processes used in the ceramic industry, including shaping, drying, firing, and glazing.
- 18. Exploring cold forming processes for metals, understanding the advantages, disadvantages, and properties associated with cold forming.
- 19. Studying hot forming processes for metals, including forging, rolling, and extrusion.
- 20. Understanding the properties of materials during hot forming and the effects of temperature and strain rate.
- 21. Understanding the principles of rolling processes, including shape rolling and calculating the forces involved in rolling operations.
- 22. Learning about different types of extrusion processes, such as direct extrusion, indirect extrusion, and impact extrusion.
- 23. Analyzing the power requirements in extrusion operations and understanding extrusion in most cone shapes.
- 24. Drawing Processes:
- 25. Exploring drawing processes, including multi-stage drawing, pipe drawing, and deep drawing.
- 26. Understanding the principles and techniques involved in drawing operations.
- 27. Welding Technology:
- 28. Gaining an understanding of welding processes, including the principles, techniques, and methods involved.

Module Aims

أهداف المادة الدراسية

	29. Studying different welding methods, such as shielded metal arc welding, gas
	metal arc welding, gas tungsten arc welding, and submerged arc welding.
	30. Casting Sandy:
	31. Learning about casting processes, including the different types of casting
	molds and the inspection of castings.
	32. Understanding centrifugal casting as a specific casting method.
	33. Powder Metallurgy Principles:
	34. Studying the principles and techniques of powder metallurgy, including
	powder production, powder mixing, compaction, sintering, and post-sintering
	operations.
	35. Understanding the applications and advancements in powder metallurgy.
	7. Ability to identify and select appropriate engineering materials based on their
	mechanical properties and application requirements.
	8. Competence in conducting mechanical tests, interpreting test results, and
	analyzing material behavior under different loading conditions.
	9. Understanding the production processes for cast iron and steel, including the
	ability to evaluate the advantages and limitations of different methods.
	10. Knowledge of the properties and characteristics of ferrous metals and their
	suitability for specific applications.
	11. Familiarity with the production processes for copper, aluminum, lead, zinc,
	and tin, and the ability to analyze their properties and applications.
	12. Understanding the methods used in the purification of bauxite for aluminum production.
Module Learning	13. Proficiency in selecting appropriate plastic forming methods based on the
	desired shape, complexity, and material properties.
Outcomes	14. Knowledge of the advantages, limitations, and applications of different
	plastic forming techniques.
	15. Understanding the properties and characteristics of ceramic materials and
مخرجات التعلم للمادة الدراسية	their applications in various industries.
الدراسية	16. Competence in the manufacturing processes for ceramics, including shaping,
	drying, firing, and glazing.
	17. Ability to apply cold forming techniques to shape and fabricate metallic
	components, considering the material properties and process limitations.
	18. Knowledge of the advantages, disadvantages, and applications of cold
	forming processes.
	19. Proficiency in utilizing hot forming processes such as forging, rolling, and
	extrusion to shape and modify metallic materials.
	20. Understanding the effects of temperature and strain rate on material
	behavior during hot forming operations.
	21. Competence in applying the principles of rolling to calculate forces, predict
	material behavior, and design rolling processes.
	22. Understanding the factors that affect the quality and efficiency of rolling
	operations.

- 23. Ability to select the appropriate extrusion method and analyze the power requirements for extrusion operations.
- 24. Knowledge of extrusion in different shapes and the factors influencing extrusion outcomes.
- 25. Competence in performing multi-stage drawing, pipe drawing, and deep drawing operations.
- 26. Understanding the principles and limitations of different drawing techniques.
- 27. Proficiency in applying welding principles and techniques to join metallic materials effectively and efficiently.
- 28. Knowledge of different welding methods and their advantages, limitations, and applications.
- 29. Understanding the casting processes, including the selection of casting molds and the inspection of castings for quality control.
- 30. Competence in applying centrifugal casting as a specific casting method.
- 31. Ability to utilize powder metallurgy techniques for the production of components and materials using powdered metals.
- 32. Knowledge of the different stages of the powder metallurgy process and the factors influencing the properties of the final product.

Indicative content includes the following.

Engineering Materials

(8 Hours)

(6 Hours)

(4 Hours)

Mechanical Properties for Engineering Materials , Mechanical Tests

(Tensile Test, Impact Test Hardness Test)

Ferrous Metal production

(8 Hours)

Production Cast Iron Production , Steel Production (Conversion method , Martin Method , Smelting Electrolysis Method)

Non-Ferrous Metal Production

Copper Metal Production (Dry method, Wet Method)

Aluminum Metal Production (Methods of Purifying Bauxite for Aluminum , Using Electrolysis method)

Metal Production of Lead, Zinc and Tin)

Plastic Industry

(Methods of Forming Plastic)

Ceramic Industry

Indicative Contents

المحتوبات الإرشادية

Cold Forming Processes (4 Hours)

Advance and dis advance, Properties of Material in cold forming,

Hot Forming Processes (4 Hours)

Advance and dis advance, Properties of Material in cold forming,

Principles Rolling Processes (4 Hours)

Principle of Rolling , Shape Rolling , Calculate force in Rolling Process,

Extrusion (4 Hours)

Direct Extrusion , Indirect Extrusion , Impact Extrusion , Analysis of Power in the

Extrusion Operations , Extrusion in Most Cone

Drawing Processes (4 Hours)

Multi-Stage Drawing, Pipe Drawing , Deep Drawing

Welding Technology (4 Hours)

The Principles of the Welding Process, Welding Techniques (Thermal Source, Sources of Mechanical, Chemical Sources), Welding Method (Shielding Metal Arc Welding,

26

Gas Metal Arc Welding , Gas Tungsten Arc Welding , Submerged Arc Welding)

Casting Sandy (4 Hours)

Casting Processes ,Types of Casting Mould , Casting Inspection ,Centrifugal Casting Powder Metallurgy principles

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

To effectively study and achieve the learning outcomes for the topics you mentioned, it is important to employ effective learning strategies. Here are some strategies you can consider:

Set Clear Goals: Clearly define your learning goals for each topic. What specific knowledge, skills, or competencies do you want to acquire? Having clear goals will help you stay focused and motivated throughout your studies.

Organize and Plan: Create a study plan or schedule that outlines the topics you need to cover and allocate specific time slots for each. This will help you manage your time effectively and ensure comprehensive coverage of the material.

Utilize Different Learning Resources: Explore various learning resources such as textbooks, online articles, video tutorials, and lecture notes. Use a combination of these resources to gain a deeper understanding of the topics and reinforce your learning.

Active Learning: Engage in active learning techniques such as summarizing concepts in your own words, discussing the topics with peers or instructors, and solving practice problems. Actively participating in the learning process enhances understanding and retention.

Visual Aids and Diagrams: Use visual aids, diagrams, and flowcharts to simplify complex concepts and enhance your understanding. Visual representations can help you grasp relationships between different elements and improve information recall.

Strategies

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	77	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	2	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

	Module Evaluation تقييم المادة الدراسية					
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Engineering Materials Mechanical Properties for Engineering Materials , Mechanical Tests (Tensile Test, Impact Test Hardness Test)			
Week 2	Ferrous Metal production Production Cast Iron Production			
Week 3	Steel Production (Conversion method , Martin Method , Smelting Electrolysis Method)			
Week 4	Non-Ferrous Metal Production Copper Metal Production (Dry method , Wet Method)			
Week 5	Aluminum Metal Production (Methods of Purifying Bauxite for Aluminum , Using Electrolysis method) Metal Production of Lead , Zinc and Tin)			

Week 6	Plastic Industry	
33000	(Methods of Forming Plastic)	
	Ceramic Industry	
Week 7	Cold Forming Processes	
	Advance and dis advance, Properties of Material in cold forming,	
Week 8	Hot Forming Processes	
	Advance and dis advance, Properties of Material in cold forming,	
Week 9	Principles Rolling Processes	
	Principle of Rolling ,Shape Rolling , Calculate force in Rolling Process,	
	Extrusion	
Week 10	Direct Extrusion , Indirect Extrusion, Impact Extrusion , Analysis of Power in the Extrusion	
	Operations , Extrusion in Most Cone	
Week 11	Drawing Processes	
	Multi-Stage Drawing, Pipe Drawing , Deep Drawing	
Week 12	Complex Frequency, s-Plane, Poles and Zeros, Response Function, Bode Plots	
	Welding Technology	
Week 13	The Principles of the Welding Process, Welding Techniques (Thermal Source, Sources of Mechanical,	
Week 15	Chamical Causas)	
	Chemical Sources),	
	Welding Method (Shielding Metal Arc Welding , Gas Metal Arc Welding , Gas Tungsten Arc Welding	
Week 14 Submorged Are Wolding		
	,Submerged Arc Welding)	
Week 15	Casting Sandy	
	Casting Processes ,Types of Casting Mould , Casting Inspection ,Centrifugal Casting	
Week 16	Powder Metallurgy principles	

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	-Milling Workshop		
Week 2	-Turning Workshop		
Week 3	- Drilling Workshop		
Week 4	- Welding Workshop		
Week 5	- Carpentry Workshop		
Week 6	- Casting Workshop		
Week 7			

	Learning and Teaching Resources		
مصادر التعلم والتدريس			
Text Available in the			

		Library?
Required Texts		Yes
Recommended Texts	Beitz, W., Pahl, G., & Grote, K. (1996). Engineering design: a systematic approach. <i>Mrs Bulletin</i> , 71.	No
Websites		

	Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Suggest Croun	B - Very Good	جید جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

MODULE DESCRIPTION FORM

	Module Information				
	معلومات المادة الدراسية				
Module Title	Electrical and Electronic Material	Module Delivery			
Module Type	Basic learning activities	☐ Theory			

Module Code	MAE113				Lecture Lab	
ECTS Credits		4			☐ Tutorial	
SWL (hr/sem)	100				□ Practical□ Seminar	
Module Level		UGx11 6	Semester o	f Deliver	у	1
Administering Dep	partment MAE		College	Engeneening		
Module Leader	Esraa Habeeb Kadhim		e-mail	esraa.kadham@uobasrah.edu.iq		h.edu.iq
Module Leader's	Acad. Title	Leacturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Na	ewer Name Name		e-mail	il E-mail		
Scientific Committee Date	01/06/2023		Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Mod	ule Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدراسية	The purpose of study the course of Electrical and Electronic Material is to focus on the important relation between the electical and electronic effectes and the types of Materials , to make students know the type of electrical properties materials and its behaver and also the electronic type of material , the stracture which is make its electrical properties like Atoms, Molecules, and Ions, Molar Mass, also Early Ideas in Atomic Theory, The Modern View of Atomic Structure , Superconductors and its applications , Conductors, Insulators and Coulomb's law and Electron theory on conductor, insulator and semiconductor and also Energy Band Structures and Bonding(metals, semiconductors, insulators)
Module Learning	

1. Recognize how electricity efffects on materials. Outcomes 2. Define Atomic Theory. 3. Explain the reaction and involvement of atoms on different types of materials 4. Describe the Electrical Resistivity and its calculation for defferint types of مخرجات التعلم للمادة الدراسية Materials. 5. Identify the Tamperture effect on resistivity and conductivity. 6. Discuss the metals as a good conductors or good insulaters and good semiconductors. 7. Discuss the various properties electronic materials. 8. Explain the capacitive proparties an inductive properties of materials. 9. Explain of Superconductors .its types , properties and behavers . 10. Study the types of Electronics junctions according to the type of materials Indicative content includes the following. Part A – Electrical Materials Atoms, Molecules and Ions diffentions, distinguish between atoms and molecules; define isotopic mass, atomic mass, and molecular mass, list important features of Dalton's atomic theory , The Electron , The Discovery of the Nucleus , Atomic Number, Electrons, Mass Number, and Isotopes, Electrical properties depending on the structure of material (Lenght and cross sectional area) [15 hrs] _ Electrical Conductivity. Capacitance and inductance properties of materials, energy storage elements, Conductors, Semiconductor and Insulaters. [15 hrs] _ Superconductivity and its applications for different types of metals . [10 hrs] _Effect of Temperature on Resistance ,Electrical Field , Electrical charge , Coulomb's Law, Charging By Contact, Systematic Measurement Electric Charge, the distrbution of electrical charge [15 hrs] **Indicative Contents** _Revision problem classes [6 hrs] المحتويات الإرشادية Part B – Electronics Materials _ Fundamentals Magnatic Flux , Magnatic Flux Density ,Type of Magnatic Materials The Magnatic Properties of Materials Magnetic Properties of Solids . [15 hrs], _ PN Junction, Biasing a PN Junction for different Materials , Space Charge Region (SCR), Energy Band Alignment, Shockley equation, Depletion approximation, P-N junction Example, Diode's Current/Voltage Characteristic, PN Junction current, Capacitive effects in the PN junction [15 hrs] _ Revision problem classes [6 hrs]

Learning and Teaching Strategies استر اتیجیات التعلم و التعلیم				
Strategies	1- Explanation and clarification through lectures. 2- Self-learning through homework and mini-projects within the lectures. 3- Laboratories. 5- Graduation projects Scientific visits.			

Student Workload (SWL)						
	اسي للطالب	الحمل الدر				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	62	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	2			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	38	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100					

Module Evaluation							
	تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber	Weight (Marks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction - Atoms, Molecules and Ions diffentions, distinguish between atoms and molecules,			

	energy storage elements, Conductors , Semiconductor and Insulaters
Week 2	define isotopic mass, atomic mass, and molecular mass, list important features of Dalton's atomic theory
Week 3	The Electron , The Discovery of the Nucleus , Atomic Number, Electrons, Mass Number, and Isotopes, Electrical properties depending on the structure of material (Lenght and cross sectional area)
Week 4	Electrical Conductivity
Week 5	Capacitance and inductance properties of materials
Week 6	Review of Inductor and Capacitor as Circuit Elements, Source-free RL and RC Circuits, Transient Response
Week 7	Superconductivity and its applications for different types of metals
Week 8	Effect of Temperature on Resistance ,Electrical Field , Electrical charge
Week 9	Coulomb's Law, Charging By Contact
Week 10	Systematic Measurement Electric Charge, the distribution of electrical charge
Week 11	Fundamentals Magnatic Flux , Magnatic Flux Density ,Type of Magnatic Materials
Week 12	Type of Magnatic Materials The Magnatic Properties of Materials Magnetic Properties of Solids
Week 13	PN Junction, Biasing a PN Junction for different Materials , Space Charge Region (SCR), Energy Band Alignment
Week 14	Shockley equation, Depletion approximation
Week 15	P-N junction Example, Diode's Current/Voltage Characteristic, P-N Junction current, Capacitive effects in the P-N junction
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1	Lab 1: Introduction electrical circuit			
Week 2	Lab 2: how to use electrical and electronic instruments			
Week 3	Lab 3: kirchhoffs laws			
Week 4	Lab 4: finding Max. Power transfer			
Week 5	Lab 5: the Measurement of resistivity and conductivity			
Week 6	Lab 6:Example of (semiconductors) P-N JUNCTION (Diode)			

Week 7	Lab 7: Example of	(semiconductors)	P-N JUNCTION ((Transistors)	,
--------	-------------------	------------------	----------------	----------------	---

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the		
	TOAL	Library?		
Required Texts	Electrical Technology	Yes		
Recommended Texts	Magnatism and Electro-magnatism	Yes		

Grading Scheme مخطط الدرجات					
Group					
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	0 – 49) F – Fail راسب (0-44) Considerable amount of work		Considerable amount of work required		

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية			
Module Title	Mathematics (II)	Module Delivery	
Module Type	Basic learning activities	☑ Theory	

Module Code	E121				☑ Lecture	
ECTS Credits	6				☐ Lab ☐ Tutorial	
SWL (hr/sem)	150				☐ Practical ☐ Seminar	
Module Level		UGx11 7	Semester o	f Deliver	у	2
Administering Dep	partment MAE		College	ENGIN	ENGINEERING	
Module Leader	Mohammed Mustafa		e-mail	moham	mohammed.abedlhafd@uobasrah.edu.id	
Module Leader's	Acad. Title	Lecturer	Module Leader's Qualification Ph.D		Ph.D.	
Module Tutor	Name (if availa	able)	e-mail	E-mail		
Peer Reviewer Na	r Name Name		e-mail	E-mail		
Scientific Committ Date	tee Approval 01/06/2023		Version Nu	mber	1.0	

Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module None Semester				
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents	
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية	
Module Aims أهداف المادة الدراسية	An introduction to integration concludes the course, with a brief description of transcendental functions. This is the second course in calculus, intended for students who have already completed a Calculus I course in limits, differential and integral calculus, and need to extend their skills in this subject. It includes applications of integration, integration techniques with numerical integration and concludes with a brief description of polar coordinates.
Module Learning	A- Knowledge and Understanding

Outcomes	A1. Illustrate the principle of calculus.			
	A2. Gain the required mathematical skills to solve different problems.			
	A3. Improve the essential skills to treat with different mathematical			
مخرجات التعلم للمادة	problems.			
مخرجات التعلم للمادة الدراسية	A4. Study the principal criteria for modelling any industrial system			
	mathematically.			
	B. Subject-specific skills			
	B1. Ability to solve mathematical problems.			
	B2. Ability to analyze and resolve any mathematical problem.			
	B3. Writing scientific reports.			
	B4. Gain the required experience to deal with industrial systems			
	mathematically.			
	Indicative content includes the following.			
	1- Integration [15 hrs]			
	The Definite Integral, Basic Integration Rules, Integration of Trigonometric			
	Functions, The Area under the Curve, The Natural Logarithmic Function, The			
	Derivative and Integration of Natural Logarithmic Function, First Law of			
	Calculus, and The mean value Theorem for Integral.			
	2- Inverse Functions [10 hrs]			
	Exponential Functions, Rules and Properties of the Exponential Functions, The			
	Derivative and Integration of Exponential Function, The Exponential Function			
	for Bases other Than (e) (a" and log.), Derivative and Integration the			
	Exponential Function for Bases other Than (e), Inverse Trigonometric			
	Functions, Derivative and Integration of Trigonometric Functions, and			
	Hyperbolic Function			
Indicative Contents	3- Applications of Integration [15 hrs]			
المحتويات الإرشادية	Area Between two curves, The Volume by using the Disk Method, The volume			
	by using Washer method, Volumes by Cylindrical Shells, Solids with Known			
	Cross Sections, Lengths of Plane Curves, and Areas of Surfaces of Revolution.			
	, ,			
	4- Integration Techniques [12 hrs]			
	Basic Integration Formulas, Integration by Parts, Trigonometric Integrals			
	Trigonometric Substitutions, Integration of Rational Functions by Partial			
	Fractions.			
	5- Numerical Integration [2 hrs]			
	The Trapezoidal Rule, The Simpson's Rule.			
	6- Polar Coordinates [4 hrs]			
	Graphing in Polar Coordinates, Areas in Polar Coordinates, Lengths in Polar			
	Coordinates.			
	Coordinates.			

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
	Reading and self-learning.			
Strategies	Training and activities during lecture.			
	• HomeWorks.			
	• Suggesting some websites for extra reading.			
	Discussions and workshops.			

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

	Module Evaluation					
تقييم المادة الدراسية						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		mber	Weight (Wanks)	Week Due	Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.					
	Report					
Summative	Midterm Exam	1.5 hr	20% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	60% (50)	16	All	
Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	The Definite Integral, Basic Integration Rules, Integration of Trigonometric Functions, The				
	Area under the Curve,				
Week 2	The Natural Logarithmic Function, The Derivative and Integration of Natural Logarithmic				
	Function,				
Week 3	First Law of Calculus, and The mean value Theorem for Integral.				
Week 4	Rules and Properties of the Exponential Functions, The Derivative and Integration of				
WCCR 4	Exponential Function				
The Exponential Function for Bases other Than (e) (a" and log.), Derivative a					
Week 5 the Exponential Function for Bases other Than (e),					
Week 6	Inverse Trigonometric Functions, Derivative and Integration of Trigonometric Functions, and				
Hyperbolic Function					
Week 7	Inverse Hyperbolic Functions, Derivative and Integration of Hyperbolic Function				
Week 8	Area Between two curves, The Volume by using the Disk Method,				
Week 9	The Volume by using Washer method, Volumes by Cylindrical Shells,				
Week 10	Solids with Known Cross Sections, Lengths of Plane Curves, Areas of Surfaces of				
Week 10	Revolution.				
Week 11	Basic Integration Formulas, Integration by Parts				
Week 12	Trigonometric Integrals, Trigonometric Substitutions,				
Week 13	Integration of Rational Functions by Partial Fractions.				
Week 14	The Trapezoidal Rule, The Simpson's Rule, Graphing in Polar Coordinates				
Week 15	Areas and Lengths in Polar Coordinates.				
	I .				

Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر			
	Material Covered		
Week 1			
Week 2			

Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	Howard Anton, Irl Bivens, Stephen Davis - Calculus_ Early Transcendentals-Wiley (2016)	Yes	
Recommended Texts	Calculus-early-transcendentals-10th-ed- howard-anton-iril-bivens-stephen-davis-ebook	Yes	
Websites			

Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

MODULE DESCRIPTION FORM

Module Information							
Module Title	معلومات المادة الدراسية Engineering Mechanics /dynamic			Modu	ıle Delivery		
Module Type	Basic learning ac	tivities			☑ Theory		
Module Code		MAE121			Lecture Lab		
ECTS Credits		6			☐ Tutorial		
SWL (hr/sem)		150			□ Practical□ Seminar		
Module Level		UGx118	Semester of Delivery 2		2		
Administering Dep	partment	MAE	College	ge ENGINEERING			
Module Leader	AZZAM DAWC	OOD HASSAN	e-mail	AZZAM	.HASSAN@UOBA	SRAH.EDU.IQ	
Module Leader's	Acad. Title	ASSISt. Professor	Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Name (if available)		e-mail	E-mail			
Peer Reviewer Name		Name	e-mail E-mail				
Scientific Committee Approval Date		01/06/2023	Version Number 1.0				

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims	The aim of studying Engineering mechanics which includes the basics of			
أهداف المادة الدراسية	static and dynamic to provide the student with knowledge and ability to solve different engineering problems.			
Module Learning				
Outcomes	Understanding basics of the dynamics Analysis of dynamics of particles and rigid body Application of principles of work-Energy and Impulse-momentum in the dynamic analysis Having information about the kinetic analysis of rigid bodies in			
مخرجات التعلم للمادة الدراسية	three dimensions.			
Indicative Contents المحتويات الإرشادية	Introduction to dynamics: Newton's Law, gravitation Kinematics of particles: rectilinear motion, curvilinear motion, rectangular coordinates, projectiles, normal and tangential coordinate, polar coordinate, relative motion, constraint motion of connected particles(pulleys), Kinetics of Particles: Force and Acceleration, forces in rectilinear and curvilinear motion Work and kinetic Energy: Potential energy and power, Impulse and Momentum, Impact Dynamic of Rigid Bodies:Fixed axis rotation, Translations motion and general plane motion			

Learning and Teaching Strategies استراتيجيات التعلم والتعليم				
Strategies	1- Explanation and clarification through lectures. 2- Display scientific materials with projectors: data show, smart boards, plasma screens. 3- Self-learning through homework and mini-projects within the lectures. 4- Laboratories. 5- Graduation projects. 6- Scientific visits. 7- Seminars held in the department. 8- Summer training.			

Assessment methods

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
	تقييم المادة الدراسية					
Time/Nu Weight (Marks) Week Due Outcome						
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	

assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Introduction		
Week 2	Kinematics-Rectilinear motion		
Week 3	Kinematics-Erratic motion		
Week 4	Kinematics-Projectile motion		
Week 5	Kinematics-Curvilinear motion		
Week 6	(Rectangular components)		
Week 7	Kinematics-curvilinear motion		
Week 8	(normal and tangential components)		
Week 9	Absolute dependent motion		
Week 10	Relative motion		
Week 11	Discussion and solution of home works		
Week 12	Kinetic-Force, mass, acceleration (rectilinear motion		
Week 13	Kinetics Force, mass, acceleration (curvilinear motion)		
Week 14	Work and energy		
Week 15	Impulse and momentum		

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1			
Week 2			
Week 3			
Week 4			
Week 5			

Week 6	
Week 7	

Learning and Teaching Resources مصادر التعلم والتدريس				
	Available in the Library?			
Required Texts	 J. L. Meriam and L. G. Kraige, 'Engineering Mechanics: dynamic (V.1), 7th edition, Wiley 2012. 2.R.C. Hibbeler, Engineering Mechanics: dynamic (Thirteenth Edition), Prentice Hall 2004 	Yes		
Recommended Texts				
Websites				

Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Croun	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Material	s Extraction Tech	nology	Modu	ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MAE122			Lecture Lab	
ECTS Credits		6			☐ Tutorial	
SWL (hr/sem)	150				□ Practical□ Seminar	
Module Level		UGx11 9	Semester o	r of Delivery 2		2
Administering Dep	partment	Material	College	e Engineering		
Module Leader	Zainab S.Abdu	lhassan	e-mail	Zainab.	abdulhassan@ud	obasrah.edu.iq
Module Leader's	Acad. Title	Assist. Lecturer	Module Lea	der's Qu	ıalification	M.Sc.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Na	Name Name		e-mail	E-mail		
Scientific Committ Date	ic Committee Approval 01/06/2023		Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	The objective of this course is to introduce students to fundamental area of materials extraction technology which enables students to focus on the study of raw materials, sources of minerals in nature and mineral processing. These principals allow the students to be in complete knowledge about the extraction techniques and selecting the suitable methods for extraction .				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 The principle knowledge Minerals ore and Mineral processing Explain the commination method of Minerals ore. Discuss the various types of mills. Discuss the Industrial screening. Describe the principle of classification. Describe the Dense medium separation and forth flotation. Discuss the operations of magnetic and electric separation. Describe the agglomeration process. Identify thermal method for extraction. An ability to select the suitable methods for extraction 				
Indicative Contents					
المحتويات الإرشادية					

Learning and Teaching Strategies					
	استراتيجيات التعلم والتعليم				
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.				

Student Workload (SWL)
الحمل الدر اسي للطالب

Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150		

Module Evaluation									
	تقييم المادة الدراسية								
	Time/Number Weight (Marks) Week Due Relevant Learning Outcome								
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11				
Formative	Assignments	1	5% (5)	2, 12	LO # 3, 4, 6 and 7				
assessment	Projects / Lab.								
	Report				LO # 5, 8 and 10				
Summative	Midterm Exam	2 hr	25% (25)	7	LO # 1-7				
assessment	Final Exam	2hr	60% (60)	16	All				
Total assessm	Total assessment 100% (100 Marks)								

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Minerals, Sources of minerals in nature, Deposits and ore, Grade of minerals, minerals processing				
Week 2	Removal of harmful materials, Ore Transportation, Ore storage ,Feeding ,sampling				
Week 3	Energy consumed in commination, Crushing, primary crushers, secondary crushers				
Week 4	Types of mills, motion of charge				
Week 5	Screening performance, screen types, screening surfaces				
Week 6	Principles of classification ,Types of classifiers				
Week 7	Principal of process , Dense medium types, separating vessels				
Week 8	Principles of flotation ,collectors, forthers, regulators				
Week 9	Magnetism in minerals, types of magnetic separator				
Week 10	Principles of separation , types of electrical separators				
Week 11	Sintering ,pelletizing				

Week 12	Removal of solid particles from gases, cyclone classifier, multi cyclones classifiers
Week 13	Roasting, sulfurization, carburization
Week 14	Electrolytic refining, metallurgical water methods
Week 15	Tailings dams, reprocessing and reuse of tailings, submarina disposal
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Library?					
Required Texts	1) Wills 'Mineral Processing Technology, Eighth Edition by Barry A.Wills, James A. Finch, FRSC, FCIM,P.Eng. 2) Mineral Processing Technology, Seventh edition, by Barry A. Wills, Tim Napier-Munn.	no			
Recommended Texts					
Websites					

Grading Scheme مخطط الدر جات					
Group					
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance	

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Human Rights and Democracy Concepts			Module Delivery		
Module Type		В		☐ Theory		
Module Code	U123			☑ Lecture☐ Lab		
ECTS Credits	4			☐ Tutorial ☐ Practical		
SWL (hr/sem)		75				
Module Level UGx11 10			Semester of	f Delivery	2	
Administering Department Type Dept. Code			College	Type College Code		
Module Leader			e-mail			

Module Leader's Acad. Title			Module Leader's Qualification			
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module None Semester					
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents						
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	Knowledge Acquisition: Provide students with a comprehensive understanding of the concepts, principles, and theories related to human rights and democracy. The aim is to ensure that students have a solid foundation of knowledge in these areas. Critical Thinking: Foster critical thinking skills by encouraging students to analyze, evaluate, and question various aspects of human rights and democracy. The aim is to develop their ability to think critically about complex issues and engage in thoughtful discussions. Awareness of Human Rights Violations: Raise students' awareness of human rights violations and abuses occurring globally. The aim is to sensitize students to the importance of protecting human rights and promote empathy towards those affected by violations. Understanding of Democratic Values: Develop an understanding of the core values and principles of democracy, such as equality, freedom, justice, and the rule of law. The aim is to help students appreciate the significance of democratic systems and their impact on society. Application of Human Rights Principles: Enable students to apply human rights					

	principles and concepts to real-world situations and dilemma their ability to analyze and address human rights challenges in Ethical Considerations: Explore ethical dilemmas and challenge rights and democracy, encouraging students to reflect on the decisions and actions. The aim is to foster a sense of ethical reintegrity.	n practical contexts. ges related to human ethical implications of		
	When teaching a module on human rights and democracy collearning outcomes can be targeted:	ncepts, the following		
	Knowledge of Human Rights: Develop a comprehensive unde principles, concepts, and historical background of human right international human rights instruments and treaties.	_		
Module Learning Outcomes	Understanding of Democracy: Gain a deep understanding of the principles, values, and mechanisms of democracy, including the participation, accountability, and transparency.			
مخرجات التعلم للمادة الدراسية	Awareness of Human Rights Violations: Develop awareness of various human rights violations and abuses that occur globally, including discrimination, torture, gender inequality, freedom of expression restrictions, and violations of civil and political rights.			
	Critical Analysis: Enhance critical thinking skills by analyzing a perspectives, debates, and controversies related to human rigincluding cultural relativism and the balance between individinterests.	ghts and democracy,		
	Fundamental of freedom	[2hr]		
	Intellectual freedom and cultural			
	Freedom of politics, Economic and Social freedom	[2hr]		
	The future of public freedoms			
Indicative Contents	Universal Declaration of Human Rights and Freedor	ms[2hr]		
المحتويات الإرشادية	Freedom in Islam	[2hr]		
	A brief explanation of the types of democracy.			
	Democracy and the entrance to it.	[2hr]		
	Applications of democracy.	[2hr]		
	Administrative and financial corruption			
	Democracy in Islam	[4hr]		

Learning and Teaching Strategies استراتيجيات التعلم والتعليم 1. Lectures: Traditional classroom lectures provide theoretical knowledge and introduce key concepts, principles, and theories in computer science. Lectures may include multimedia presentations, demonstrations, and interactive discussions. 2. Practical Programming Exercises: Hands-on programming exercises and coding assignments allow students to apply theoretical concepts and develop their programming skills. These exercises may involve problemsolving, algorithm implementation, and software development. 3. Group Projects and Collaborative Learning: Group projects and collaborative learning activities promote teamwork, communication, and the exchange of ideas. Students work together on larger projects, such as developing software applications, to apply their knowledge and skills in a real-world context. 4. Problem-Solving Sessions: Facilitated problem-solving sessions provide **Strategies** students with opportunities to solve complex programming or algorithmic problems. These sessions promote critical thinking, analytical skills, and the ability to apply theoretical knowledge to practical scenarios. 5. Laboratory Sessions: Practical laboratory sessions allow students to gain hands-on experience with computer hardware, software, and tools. These sessions may involve conducting experiments, configuring networks, or working with specialized software applications. 6. Assessments and Examinations: Regular assessments, including quizzes, tests, and examinations, evaluate students' understanding of the subject matter and their ability to apply concepts and solve problems. 7. Research and Independent Study: Encouraging research projects and independent study allows students to explore specific areas of interest within computer science and develop their research skills. **Student Workload (SWL)** الحمل الدر اسى للطالب محسوب لـ ١٥ اسبو عا Structured SWL (h/sem) Structured SWL (h/w) 3 47 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل Unstructured SWL (h/sem) Unstructured SWL (h/w) 28 0 الحمل الدراسي غير المنتظم للطالب أسبوعيا الحمل الدراسي غير المنتظم للطالب خلال الفصل

Total SWL (h/sem)					
الم المال ، خلال الفصل	الحمل الدياسم				

Module Evaluation

75

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2 hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)		
المنهاج الاسبوعي النظري			
	Material Covered		
Week 1	Fundamental of freedom		
Week 2	Intellectual freedom and cultural		
Week 3	Freedom of politics, Economic and Social freedom		
Week 4	The future of public freedoms.		

Week 5	Universal Declaration of Human Rights and Freedoms
Week 6	Freedom in Islam
Week 7	A brief explanation of the types of democracy.
Week 8	Democracy and the entrance to it.
Week 9	Applications of democracy.
Week 10	Administrative and financial corruption
Week 11	Democracy in Islam.
Week 12	
Week 13	
Week 14	
Week 15	
Week 16	

	Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر				
Material Covered				
Week 1				

Week 2	
Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Available in the Text			
	· Uni	Library?		
Required Texts				
Recommended Texts				
Websites				

Grading Scheme					
	مخطط الدرجات				
Group Grade التقدير Marks (%) Definition				Definition	
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance	

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Co	omputer Sciences	S	Module Delivery		
Module Type		Core		☐ Theory ☐ Lecture ☐ Lab ☐ Tutorial ☐ Practical		
Module Code		U122				
ECTS Credits		4				
SWL (hr/sem)		100		☐ Seminar		
Module Level	UGx11 11		Semester o	f Delivery	2	
Administering Department		Type Dept. Code	College	Type College Code		
Module Leader	Munira Waheed Mahan		e-mail	munira.mahan@uobasrah.edu.iq		
Module Leader's Acad. Title		Assistant Lecturer	Module Leader's Qualification MSc.		MSc.	
Module Tutor	Module Tutor Name (if available)		e-mail	E-mail		

Peer Reviewer Name	Name	e-mail	E-mail	
Scientific Committee Approval Date	01/06/2023	Version Nu	mber	1.0

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	 Develop proficiency in programming languages, algorithms, and data structures. Foster critical thinking and problem-solving skills for designing efficient and reliable software solutions. Cultivate an understanding of computer architecture, operating systems, and network fundamentals. Promote software engineering practices, including software design, development, testing, and maintenance. Enhance knowledge of database systems, data management, and data analysis techniques. Enable students to explore emerging areas of computer science, such as artificial intelligence, machine learning, and cybersecurity. Prepare students for successful careers in various computer science roles, 			
	as well as for advanced study and research in the field.			
Module Learning Outcomes	 Demonstrate a comprehensive understanding of the fundamental concepts, theories, and principles of computer science. 			
Outcomes	Apply programming languages, algorithms, and data structures effectively to design and develop software solutions.			
مخرجات التعلم للمادة	 Analyze and solve complex problems by utilizing appropriate computational and algorithmic techniques. 			

" (.)	A Development of the state of t			
الدراسية	4. Demonstrate proficiency in software engineering practices, including			
	software design, development, testing, and maintenance.			
	 Utilize computer architecture and operating systems knowledge to optimize system performance and ensure efficient resource utilization. 			
	6. Design and manage relational and non-relational databases, including data			
	modeling, querying, and data management.			
	7. Apply machine learning and artificial intelligence techniques to solve real-			
	world problems and make data-driven decisions.			
	Employ effective cybersecurity measures to protect computer systems and			
	data from unauthorized access or malicious activities.			
	Collaborate effectively in interdisciplinary teams, demonstrating teamwork,			
	communication, and leadership skills in software development projects.			
	10. Demonstrate ethical awareness and understanding of legal and societal			
	implications in the field of computer science.			
	1. Programming Fundamentals:			
	Introduction to programming languages, Variables, data types, and operators			
	Control structures (loops, conditionals), Functions and modular programming			
	Arrays and data structures. [6 hrs]			
	2. Algorithms and Data Structures:			
	Analysis of algorithms and algorithmic efficiency, Sorting and searching algorithms			
	Linked lists, stacks, queues, and trees, Graph algorithms and traversal techniques			
	Hashing and hash tables. [6 hrs]			
	3. Software Engineering:			
Indicative Contents	Software development life cycle, Requirements analysis and specification			
المحتويات الإرشادية	Software design patterns and principles, Testing and quality assurance, Software			
	maintenance and documentation. [6 hrs]			
	4. Computer Architecture and Operating Systems:			
	Computer organization and architecture, Memory management and virtual memory,			
	Process management and scheduling, File systems and storage management,			
	Operating system principles and functions. [6 hrs]			
	5. Database Systems:			
	Relational database concepts, Database design and normalization, Transaction			
	management and concurrency control. [6 hrs]			
	Non-relational databases			
	6. Revision problem classes [8 hrs]			
	Learning and Teaching Strategies			

استراتيجيات التعلم والتعليم

- Lectures: Traditional classroom lectures provide theoretical knowledge and introduce key concepts, principles, and theories in computer science. Lectures may include multimedia presentations, demonstrations, and interactive discussions.
- Practical Programming Exercises: Hands-on programming exercises and coding assignments allow students to apply theoretical concepts and develop their programming skills. These exercises may involve problemsolving, algorithm implementation, and software development.
- 3. Group Projects and Collaborative Learning: Group projects and collaborative learning activities promote teamwork, communication, and the exchange of ideas. Students work together on larger projects, such as developing software applications, to apply their knowledge and skills in a real-world context.
- 4. Problem-Solving Sessions: Facilitated problem-solving sessions provide students with opportunities to solve complex programming or algorithmic problems. These sessions promote critical thinking, analytical skills, and the ability to apply theoretical knowledge to practical scenarios.
- Laboratory Sessions: Practical laboratory sessions allow students to gain hands-on experience with computer hardware, software, and tools.
 These sessions may involve conducting experiments, configuring networks, or working with specialized software applications.
- 6. Assessments and Examinations: Regular assessments, including quizzes, tests, and examinations, evaluate students' understanding of the subject matter and their ability to apply concepts and solve problems.
- 7. Research and Independent Study: Encouraging research projects and independent study allows students to explore specific areas of interest within computer science and develop their research skills.

Student Workload (SWL)

الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا

Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	77	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125		

Strategies

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

المنهاج الاسبوعي النظري

	المنهاج الاسبوعي النظري	
	Material Covered	
Week 1	Problem solving algorithms	
WCCK 1	Data structures, searching and sorting algorithms	
Week 2	Basic Variables	
WCCR 2	Variable types, Variable Names, Declarations	
Week 3	Assignment statements and expressions in V. Basic	
	Logical expressions and operators, Mathematical expressions and operators	
	Conditional Decisions and Loops	
Week 4	1-Conditional Decisions	
	If/Then/End If statement, If/Then/Else/End If statement	
Week 5	If/Then/ElseIf/End If statement, Select Case statement, Switch statement, IIf	

	statement, Choose statement
Week 6	2- Loops For-Next statement, While-Wend statement, Do Until-Loop statement, Do While-Loop statement, Do-Loop Until statement, Do-Loop While statement
Week 7	ARRAYS Declaring Arrays , Input and Output Arrays, Generate Specific Array Elements
Week 8	Computational (mathematical) processes that take place on the matrices (arrays)
Week 9	Review of basic instructions of V. Basic to prepare for advanced V. basic
Week 10	Built in Functions, User defined functions and subroutines
Week 11	Sequential files, Random Files
Week 12	Flowcharts: symbols, conversion algorithm to Flowchart
Week 13	Flowcharts: loops, overlaps
Week 14	Engineering applications, start writing the matter to write the program
Week 15	Application for Student
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Lab 1: Steps to create, compile and implement a program using Microsoft visual Basic 6.0		
Week 2	Lab 2: Implement programs for conditional statements (if-statement)		
Week 3	Lab 3: Implement programs for conditional statements (switch-statement)		
Week 4	Lab 4: Implement programs for Loop statements (for-statement)		
Week 5	Lab 5: Implement programs for conditional statements (while-statement, do-while-statement)		

Week 6	Lab 6: Implement programs for Array (one dimension)
Week 7	Lab 7: Implement programs for Array (two-dimension)

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?		
Required Texts	Introduction: Visual Basic 6.0	No		
Recommended Texts	Visual Basic .NET Notes for Professionals book No			
Websites	 https://www.studocu.com/row/document/kca-university/network programming/intro-to-programming-lecture-notes-1/23829205 https://www.studocu.com/row/document/kings-university-college/visual-basic-programming/lecture-note-1/50754796 https://freecomputerbooks.com/Visual-Basic-Wikibooks.html 			

	Grading Scheme						
	مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Е	English / Technica	1	Module Delivery		
Module Type	Ba	sic learning activities	S	☑ Theory		
Module Code		U123			☑ Lecture □ Lab	
ECTS Credits	4			☐ Tutorial ☐ Practical		
SWL (hr/sem)		100				
Module Level	UGx11 12		Semester o	f Delivery	2	
Administering Dep	Department Type Dept. Code		College	Type College Code		
Module Leader	Name		e-mail	E-mail		

Module Leader's Acad. Title		Professor	Module Leader's Qu		alification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number		1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Modu	Module Aims, Learning Outcomes and Indicative Contents						
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية						
Module Aims أهداف المادة الدراسية	Developing Language Skills: The primary aim is to enhance students' language skills in English, with a particular focus on technical vocabulary, grammar, reading comprehension, writing, speaking, and listening. The goal is to enable students to effectively communicate and understand technical information in English. Building Technical Vocabulary: Technical English courses aim to expand students' technical vocabulary related to specific fields or industries. This includes introducing and practicing specialized terminology, abbreviations, acronyms, and jargon commonly used in technical contexts. Enhancing Reading Comprehension: Technical English modules aim to improve students' ability to comprehend and analyze technical texts, such as manuals, reports, scientific articles, and technical documentation. Students learn to extract relevant information, understand the structure and organization of technical						
	texts, and identify key concepts. Developing Writing Skills: Teaching technical English often emphasizes developing students' technical writing skills. This involves teaching them how to write clear, concise, and coherent technical documents, such as reports,						

proposals, emails, and project documentation. Emphasis may be placed on formatting, style, organization, and using appropriate language for technical communication.

Practicing Oral Communication: The module aims to enhance students' ability to communicate effectively in technical contexts through oral presentations, discussions, and conversations. This includes improving pronunciation, fluency, and the ability to convey complex technical information clearly and accurately.

Fostering Intercultural Communication: Technical English courses may aim to foster students' intercultural communication skills by exposing them to different cultural perspectives and communication styles within technical settings. This helps students develop awareness and sensitivity to cultural differences that may impact technical communication in international or multicultural environments.

Developing Critical Thinking: Teaching technical English can aim to cultivate students' critical thinking skills, encouraging them to analyze and evaluate technical information, arguments, and evidence. This includes promoting problem-solving abilities, logical reasoning, and the ability to make informed decisions based on technical data.

Promoting Autonomous Learning: Technical English modules may aim to empower students to become independent and self-directed learners. This involves providing them with strategies and resources for self-study, encouraging them to take responsibility for their learning, and fostering lifelong learning habits.

Module Learning Outcomes

مخرجات التعلم للمادة الدراسية Language Proficiency: Students should demonstrate an improved level of proficiency in technical English, including vocabulary acquisition, grammar usage, and the ability to understand and produce technical texts.

Technical Vocabulary: Students should be able to comprehend and use technical vocabulary relevant to their field of study or industry, including specialized terminology, abbreviations, acronyms, and jargon.

Reading Comprehension: Students should exhibit enhanced reading comprehension skills when engaging with technical texts, such as manuals, reports, scientific articles, and technical documentation. They should be able to extract key information, identify main ideas, and understand the overall structure and purpose of the texts.

Writing Skills: Students should demonstrate the ability to produce clear, concise, and well-structured technical documents. This includes reports, proposals, emails, and other forms of written communication commonly used in technical

contexts.

Oral Communication: Students should be able to communicate effectively in technical settings, including giving presentations, participating in discussions, and engaging in conversations related to technical topics. They should be able to articulate ideas clearly, use appropriate technical language, and respond appropriately to questions or comments.

Intercultural Communication: Students should develop intercultural communication skills, demonstrating an understanding of cultural differences and the ability to adapt their communication style in multicultural technical environments.

Critical Thinking: Students should exhibit critical thinking skills by analyzing and evaluating technical information, arguments, and evidence. They should be able to apply logical reasoning and problem-solving strategies to make informed decisions based on technical data.

Independent Learning: Students should demonstrate the ability to engage in self-directed learning, utilizing strategies and resources to further develop their technical English skills beyond the module. They should take responsibility for their learning and demonstrate a commitment to lifelong learning.

Indicative content includes the following.

Technical Vocabulary and Terminology: Introduction and practice of technical vocabulary and terminology relevant to the field of study or industry. This may include word lists, glossaries, and exercises to reinforce understanding and usage. [10 hrs]

Grammar and Language Skills: Review and practice of grammar structures commonly used in technical English, such as tenses, passive voice, conditionals, and sentence structures specific to technical writing. Language skills development may include pronunciation, intonation, and stress patterns. [10 hrs]

Indicative Contents

المحتويات الإرشادية

Reading Comprehension: Strategies and exercises to enhance reading comprehension of technical texts. This may involve analyzing text structure, identifying main ideas, understanding technical diagrams or charts, and extracting relevant information. [10 hrs]

Writing Technical Documents: Instruction and practice in writing various technical documents, such as reports, proposals, memos, emails, and technical documentation. Focus areas may include formatting, organization, clarity, and conciseness. [10 hrs]

Speaking and Listening in Technical Contexts: Activities and exercises to develop oral communication skills in technical settings. This may include giving presentations, engaging in discussions, conducting interviews, and participating

in role plays related to technical topics. [10 hrs]

Technical Communication Skills: Instruction and practice in effective technical communication strategies, including conveying complex ideas clearly and accurately, using appropriate tone and register, and adapting communication to specific audiences or purposes. [10 hrs]

Understanding Technical Texts: Analysis and comprehension of different types of technical texts, such as manuals, scientific articles, research papers, and industry-specific documents. This may involve close reading, summarizing, and critically evaluating technical information. [10 hrs]

Intercultural Communication: Exploration of cultural factors and their impact on technical communication. This may include discussing cultural differences in communication styles, etiquette, and norms within technical environments, especially in international or multicultural contexts. [10 hrs]

Critical Thinking and Problem-Solving: Developing critical thinking skills to analyze and evaluate technical information, arguments, and evidence. Students may engage in activities that require logical reasoning, problem-solving, and decision-making based on technical data. [10 hrs]

Independent Learning Strategies: Introduction to resources, tools, and strategies for self-directed learning beyond the module. This may include guidance on using online resources, dictionaries, specialized databases, and practicing technical English in real-world contexts. [10 hrs]

Learning and Teaching Strategies استراتیجیات التعلم والتعلیم Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)				
الحمل الدراسي للطالب				
Structured SWL (h/sem)	62	Structured SWL (h/w)		
الحمل الدراسي المنتظم للطالب خلال الفصل	02	الحمل الدراسي المنتظم للطالب أسبوعيا		
Unstructured SWL (h/sem)	38	Unstructured SWL (h/w)		

الحمل الدراسي غير المنتظم للطالب خلال الفصل		الحمل الدراسي غير المنتظم للطالب أسبوعيا	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100		

Module Evaluation تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessme	ent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)							
	المنهاج الاسبوعي النظري						
	Material Covered						
Week 1	 Introduction to the module and course overview Diagnostic assessment to assess students' language proficiency and technical English skills Introduction to technical vocabulary and terminology in the field of study or industry Grammar review: Present tenses and their usage in technical contexts 						
Week 2	 Reading comprehension strategies for technical texts Practice exercises on understanding and extracting information from technical documents Introduction to technical writing: Formatting and structure of technical reports Grammar focus: Passive voice in technical writing 						
Week 3	 Developing writing skills for technical documents: Writing effective introductions and conclusions Practice exercises on summarizing and paraphrasing technical information Listening activities related to technical presentations and discussions Speaking practice: Giving short technical presentations on familiar topics 						

Week 4	 Reading and analyzing technical diagrams, charts, and graphs Writing technical emails and memos: Structure and language conventions Listening exercises: Understanding technical instructions and following procedures Grammar focus: Conditionals in technical communication
Week 5	 Writing technical reports: Organizing and presenting data and findings Speaking practice: Participating in technical discussions and debates Intercultural communication in technical contexts: Understanding and adapting to different cultural communication styles Grammar review: Sentence structures for clear and concise technical writing
Week 6	 Developing critical thinking skills in technical communication: Evaluating arguments and evidence Practice exercises on analyzing and critiquing technical information Revision and practice of key technical vocabulary and terminology Independent learning strategies: Resources for further development of technical English skills
Week 7	 Review and consolidation of key concepts and skills covered in the module Final assessments, such as written assignments, presentations, or tests Feedback and reflection on students' progress and areas for improvement Discussion of future opportunities to apply technical English skills
Week 8	 Technical reading strategies: Skimming, scanning, and reading for specific purposes Writing technical proposals: Structure, content, and persuasive language Listening exercises: Understanding technical lectures or talks Grammar focus: Complex sentence structures in technical writing
Week 9	 Developing effective technical documentation: Writing manuals, user guides, or instructions Practice exercises on creating clear and user-friendly technical documents Speaking practice: Simulating technical scenarios and role plays Grammar review: Relative clauses and their usage in technical contexts
Week 10	 Enhancing technical presentation skills: Visual aids, delivery techniques, and engaging the audience Practice exercises on delivering effective technical presentations Listening activities: Understanding technical interviews or panel discussions Vocabulary expansion: Industry-specific terms and expressions

Week 11	 Reviewing and refining technical writing skills: Editing and proofreading techniques Writing technical research papers or case studies: Structure and academic language conventions Intercultural communication challenges in international technical collaborations Grammar focus: Cohesive devices for coherence in technical writing
Week 12	 Advanced reading comprehension: Analyzing and evaluating complex technical texts Practice exercises on critical reading and synthesizing information Speaking practice: Presenting and defending technical arguments or viewpoints Grammar review: Modal verbs for expressing possibility and certainty
Week 13	 Specialized communication skills: Effective negotiation and persuasion in technical contexts Practice exercises on negotiation scenarios and role plays
Week 14	 Review and reinforcement of key technical vocabulary and terminology Independent study and project work
Week 15	Project presentations and discussions: Applying technical English skills in real-world contexts

Delivery Plan (Weekly Lab. Syllabus)				
المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				
Week 5				
Week 6				
Week 7				

Learning and Teaching Resources

مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts					
Recommended Texts					
Websites					

Grading Scheme مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Cream	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
	F – Fail	راسب	(0-44)	Considerable amount of work required			

MODULE DESCRIPTION FORM

Module Information						
معلومات المادة الدراسية						
Module Title	Applied Mathematics I	Module Delivery				
Module Type	Basic	☑ Theory				

Module Code	E231					
ECTS Credits				☐ Tutorial		
SWL (hr/sem)	125			☐ Practical ☐ Seminar		
Module Level		UGx11 13	Semester of Delivery		3	
Administering Department		Type Dept. Code	College	Type College Code		
Module Leader	Dr. Dhia Chasib Ali		e-mail	Dhai.ali@uobasrah.edu.iq		
Module Leader's	Acad. Title	lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if availa	able)	e-mail E-mail			
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module		Semester	1 st Class		
Co-requisites module Semester					

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	 To develop problem solving skills and understanding of analytical solutions To understand the different ways for solving engineering problems Increasing the opportunity for students to practice thinking methods, such as reflective, deductive, and inductive thinking. Increase pupils' skills needed to absorb what they are studying and to discover new relationships To understand vector analysis and solution of ordinary differential equations 			

Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Recognize how deals with vectors List the various types of governing system equations and trying to solve Summarize what is meant by a matrix, vectors and ODE Describe many types of equations and learn to solve Full knowledge of basic concepts, facts and theories in mathematics. Proving various mathematical problems. The ability to employ mathematics in various life issues. The ability to translate life issues into mathematical models. 			
	Indicative content includes the following.			
Indicative Contents المحتويات الإرشادية	 Part A – Matrices Matrices – introduction – operations – determinants- inverse, Solution system of equation – Gauss and Cramer's methods – linear dependent [12 hrs] Part B – Vectors Vectors- operations on vectors – dot & cross products, Applications on dot and cross products [12 hrs] Lines & planes – relations between them- Distance between points and lines / planes Vector valued functions – limit & continuity – Derivative and Integrals-Directional Derivatives- Tangent and normal vectors- Gradients – divergence-curl- conservative vector [24 hrs] Part C – Ordinary Differential equations 			
	 Ordinary Differential Equations – Definitions – solutions - Separation of variables Homogeneous Equations – Exact and inexact equations [12 hrs] Linear and Bernoulli Equations - Second order differential equations [12 hrs] D- operator method foe homogeneous and non-homogeneous - Undetermined coefficients for non- homogeneous equations - Variation of parameters for non- homogeneous equations [18 hrs] 			

Learning and Teaching Strategies				
استر اتيجيات التعلم والتعليم				
Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.				

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) 125 الحمل الدراسي الكلي للطالب خلال الفصل				

	Module Evaluation						
	تقييم المادة الدراسية						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
			weight (warks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	1	5% (5)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.						
	Report						
Summative	Midterm Exam	2 hr	25% (25)	7	LO # 1-7		
assessment	Final Exam	2 hr	60% (60)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)					
المنهاج الاسبوعي النظري					
	Material Covered				
Week 1	Matrices – introduction – operations – determinants- inverse				
Week 2	Solution system of equation – Gauss and Cramer's methods – linear dependent				
Week 3	Vectors- operations on vectors – dot & cross products				
Week 4	Applications on dot and cross products -				
Week 5	Lines & planes – relations between them				
Week 6	Distance between points and lines / planes				

Week 7	Vector valued functions – limit & continuity – Derivative and Integrals- Directional
week /	Derivatives
Week 8	Tangent and normal vectors- Gradients – divergence- curl- conservative vector
Week 9	Ordinary Differential Equations – Definitions – solutions - Separation of variables
Week 10	Homogeneous Equations – Exact and inexact equations
Week 11	Linear and Bernoulli Equations
Week 12	Second order differential equations
Week 13	D- operator method foe homogenous and non-homogenous
Week 14	Undetermined coefficients for non- homogenous equations
Week 15	Variation of parameters for non- homogenous equations
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
	Calculus	Yes		
Required Texts	By Ross L. Finney & George B. Thomas	1.03		
Required Texts	Calculus	Vec		
	By B.G. Thomas	yes		
Recommended Texts	Calculus	Voc		
	By Anton Bivens Davis	yes		

147 - L 11		
Websites		

Grading Scheme مخطط الدر جات						
Group						
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
6	B - Very Good	عيد جدا 80 - 89 Above average with some		Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية					
Module Title	P	Physical Metallurgy			
Module Type	Core			☑ Theory	
Module Code	MAE231			☑ Lecture ☑ Lab □ Tutorial □ Practical	
ECTS Credits	5				
SWL (hr/sem)		125		☐ Seminar	
Module Level	Module Level UGx11 14		Semester o	f Delivery	3
Administering Department		Materials	College	Engineering	
Module Leader	Nawal J. Hammadi		e-mail	nawalalmudeer@gmail.	com
Module Leader's Acad. Title		Assit. Professor	Module Lea	nder's Qualification	Ph.D.

Module Tutor	Name (if available)		e-mail	E-mail	
Peer Reviewer Name Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية The objective of studying "Physical Metallurgy" is :1.To recognize the groups of metals in "Periodic Table" as "Transition metals", the atomic structure, elemental state and reactivity in earth crust - atmospheric gases. Chemical compounds of metals under the effect of acids, bases and salts and other aggressive agents, 2. Study of Metal Failures :a wide range of metal environment interaction leading to failure will be introduced. The course **Module Aims** aimed to study the: 3. Mechanical properties relative to atomic structure أهداف المادة الدراسية and metallic bond i.e. Vander Waals forces. Moreover, the course include study of:4. "Physical and Mechanical Properties of Metals" such as ,yield and tensile strength, modulus of elasticity, hardness, toughness acc. to B.S. & ASTM specifications, 5. The "Non-destructive tests" for the detection of surface defects as dye - penetrant and magnetic particles method & the "Destructive Tests for the detection of internal defects including X-rays, y-

Module Aims, Learning Outcomes and Indicative Contents

rays and ultrasonic, Exercises. Also, this course also includes: 6.Study of the Crystalline Structure of Metals- Types of Crystalline Structural Defects-

	7."Mechanical Deformation and Recovery"- Annealing and recrystallization - Superplasticity, Exercises. 8. Fracture of Metals -"Griffith's Crack Theory"- Factors leading to crack formation- Fatigue-Creep, 9.The industrial Shaping of Metals.10. An Introduction to steel- Microstructural Nature of Carbon Steels - Cooling Curves-Iron carbon system-Thermal Equilibrium Diagram-Phase change ,11. Mechanical Properties of carbon Steels and typical uses-Detection of Microstructural Changes of Carbon Steels. Factors Leading to Failure of Carbon Steels.12. Control and Corrective measures of Carbon Steels Failures. Case studies and Exercises.
	A- Knowledge and Understanding of "Metals and Alloys Characteristics".
	A1.An ability to apply knowledge of metals physical properties on science, and engineering practice.
	A2. An ability to design and conduct experimental testing, as well as to analyze and interpret the resultant data toward the corrective measures.
	A3. An ability to investigate then to identify, formulate, and solve engineering problems on the basis of theoretical or experimental data deduced from plant operation and maintenance .
Module Learning	A4. An ability to use the techniques, skills, and modern engineering instruments and tools
Outcomes	necessary for inspection and engineering practice.
	B. Subject-specific skills
مخرجات التعلم للمادة الدراسية	B1. The ability to design and select engineering materials properly for scientific and industrial applications.
	B2. The ability to think about solving problems related to the use of
	engineering materials and methods of control or avoiding them.
	B3. Writing scientific reports, reading blueprints and analyzing engineering
	materials.
	B4. The ability to keep pace with developments in engineering materials and
	their properties according to international standard.
	Indicative content includes the following:
Indicative Contents	Part A – Fundamentals of Chemical, Physical and Mechanical Properties
المحتويات الإرشادية	Atomic structure-Periodic table and transition metals-Metals reactivity- Metals
	interactions with acids ,alkalis, gases, aqueous solutions-Secondary bonding. The Physical and Mechanical Properties of Metals and alloys- Fundamentals-

Tensile strength-Hardness- Impact- Exercises. [20hrs] - The crystalline structure of Metals - Normal structure versus defected structure- Examination Technique and Instrumentation -Identification of microstructural Defects-Mechanical Deformation and Recovery- Annealing and Recrystallization-Fracture of Metals-Ductile and Brittle Fracture-Exercises. [25hrs] Part B - Phase Equilibrium of Steel - An Introduction to Steel- Iron Production- The Manufacture of Steel- The Uses of Carbon Steel-The Microstructural Nature of Carbon Steel-The Formation of Alloys-The Solid -Solution -Eutectics and Eutectoids-Strengthening Mechanism in Alloys - Exercises. [15hrs] - Thermal Equilibrium Diagram- Case I (two metals only partially soluble in liquid state)- Case II (two metals mutually soluble in all proportions in liq. state becoming insoluble in solid state). Case III (two metals mutually soluble in all proportions in liq. state ,remain mutually soluble in all proportions in solid state – Case IV (two metals mutually soluble in all proportions in liq. State but only partially soluble in the solid state) Case V (a system of peritectic transformation) - Case VI (systems containing one or more intermediate phase) - Exercises. [20 hrs] - Heat Treatment of Carbon Steel I -Annealing-Normalizing. -Heat Treatment of Carbon Steel II- Hardening-Tempering- Isothermal transformation.(10 hrs) Learning and Teaching Strategies

Assessment	methods
Assessinent	memous

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL)				
الحمل الدراسي للطالب				
Structured SWL (h/sem)		Structured SWL (h/w)		
الحمل الدراسي المنتظم للطالب خلال الفصل	77	الحمل الدراسي المنتظم للطالب أسبوعيا	3	
Unstructured SWL (h/sem)	40	Unstructured SWL (h/w)	2	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem)	125			
الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation

	تقييم المادة الدراسية					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Atomic structure-Periodic table and transition metals-Metals reactivity- Metals interactions with acids ,alkalis, gases, aqueous solutions-Secondary bonding.			
Week 2	The Physical and Mechanical Properties of Metals and alloys- Fundamentals- Tensile strength-Hardness- Impact			
Week 3	The crystalline structure of Metals - Normal structure versus defected structure- Examination Techniques and Instrumentation -			
Week 4	The crystalline structure of Metals			
Week 5	Normal structure versus defected structure- Examination Technique and Instrumentation			

Week 6	dentification of microstructural Defects-Mechanical Deformation and Recovery- Annealing and Recrystallization- Fracture of Metals-Ductile and Brittle Fracture
Week 7	An Introduction to Steel- Iron Production- The Manufacture of Steel- The Uses of Steel.
Week 8	The Microstructural Nature of Carbon Steel-The Formation of Alloys- The Solid -Solution -Eutectics and Eutectoids-Strengthening Mechanism in Alloys .
Week 9	Thermal Equilibrium Diagram- Case I (two metals only partially soluble in liquid state)- Case II (two metals mutually soluble in all proportions in liq. state becoming insoluble in solid state) - graphical representation .
Week 10	Case III (two metals mutually soluble in all proportions in liq. state ,remain mutually soluble in all proportions in solid state - graphical representation
Week 11	Case IV (two metals mutually soluble in all proportions in liq. State but only partially soluble in the solid state) Case V (a system of peritectic transformation) graphical representation
Week 12	Case VI(systems containing one or more than intermediate phase)- graphical representation.
Week 13	Heat Treatment of Carbon Steel I -Annealing-Normalizing- graphical representation.
Week 14	Heat Treatment of Carbon Steel II-Hardening -Isothermal transformation- graphical representation.
Week 15	Heat Treatment of Carbon Steel II - Hardening ,Tempering - graphical representation.

Delivery Plan (Weekly Lab. Syllabus)

	Material Covered
Week 1	Tensile Test.
Week 2	Hardness Test.
Week 3	Impact Test
Week 4	Microstructure for metals
Week 5	Heat Treatment by Isothermal Transformation.
Week 6	Annealing of Cold-Worked Carbon Steel.
Week 7	Annealing Versus Normalizing.

	Learning and Teaching Resources					
	مصادر التعلم والتدريس					
	Text	Available in the Library?				
Required Texts	Engineering Metallurgy, Part I Applied physical Metallurgy, 6 ed., R.A. Higgins, 1999 Reprinted by Arnold (UK).	Yes				
Recommended Texts	D.R. Askeland and P.P.Phule "The Science and Engineering of Materials, 4 th ed., Thomson Academic Center, USA,2003.	Yes				
Websites	Libraries sites in some engineering and scientific universities.					

Grading Scheme							
	مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition			
Success Group	A - Excellent	امتياز	90 – 100	Outstanding Performance.			
(50 - 100)	B - Very Good	جيد جدا	80 – 89	Above average with some errors.			
	C – Good	جيد	70 – 79	Sound work with notable errors.			

	D - Satisfactory	متوسط	60 – 69	Fair but with major shortcomings.
	E - Sufficient	مقبول	50 – 59	Work meets minimum criteria.
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Che	mical Metallur	Module Delivery			
Module Type	Basic	learning activitie	⊠ Theory			
Module Code	MAE232					
ECTS Credits	5			☐ Tutorial☐ Practical		
SWL (hr/sem)	125			☐ Seminar		
Module Level		15	Delivery	3		

Administering Department		Material	College	Engineering		
Module Leader	Hayder Abdulhasan Abbood		e-mail	Hayder.abood@uobasrah.edu.iq		h.edu.iq
Module Leader's Acad. Title Professor		Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules							
	العلاقة مع المواد الدراسية الأخرى						
Prerequisite module	None	Semester					
Co-requisites module	None	Semester					

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

Module Aims

أهداف المادة الدراسية

The main objective of this course is to provide students with general basic knowledge about different aspects, problems and applications of chemical metallurgy and to provide them with an in-depth knowledge of thermodynamic metallurgy, kinetic of reactions and electrochemistry. The principles of electrorefining are introduced. The students can explain and apply the principles of interfacial forces between two and three phase and solutions. The students are familiar with the concepts of activity and activity coefficient. They can calculate complex equilibria; they can construct and interpret speciation and phase stability diagrams. The students can determine the conditions for removal of metals from solution by selective precipitation.

	A- Knowledge and Understanding
	A1. Thermodynamic 1 and 2, Thermodynamic low Relations, Chemical Potential, Gibbs - Helmholtz Equation, Criteria of Equilibria
	A2. Explain about process flow sheet and reaction as well as chemical kinetics in detail
	A3. Study about different chemical kinetics and slag- metal reactions in detail.
	A4. Predict the chemical phenomena of interfacial forces between two and three phase
Module Learning Outcomes	A5. Understanding of the nature of polarized electrochemical reactions and an introduction of their application in corrosion behavior of metals
	Necessary for engineering practice.
مخرجات التعلم للمادة الدراسية	B. laws of diffusion.
	B1. Interpret Ellingham diagrams
	B2. Determination of Electrode potential. Thermodynamic aspects - Nerrnest equation. Galvanic series
	B3. Describe the chemical processes that take place during motels making.
	B4. The ability to keep pace with developments in engineering materials and
	their properties.
	Indicative content includes the following.
Indicative Contents	
المحتويات الإرشادية	Part A – T
	Thermochemistry and Kinetic chemistry

- Rate Reaction, Rate-Controlling Step, Order of Reaction (First-order , Second-Order), Reversible reaction $[15\ hrs]$.
- Heterogeneous Reactions in metallurgical system), Rate Equation, Types of Reactions, Heat and Mass Transfer (Conduction, Convection and Radiation), Mass Transport in Heterogeneous Reactions, Diffusions (Diffusion in the solid state), Kirkendall Effect. $[9~\mathrm{hrs}]$
- Introduction to Electrochemistry or Electrometallurgy, Electrolytes (Classification of Electrolytes) and Electrodes, Conduction in electrolytes, Example of Electrolysis [13 hrs]

Part B – Interfacial Phenomena

- Introduction to Interfacial Phenomena, Surface energy, Surface tension, Interfacial energy of the other gas/liquid interface: three phase interfaces.. $[10~{\rm hrs}]$
- Adsorption, Adsorption Process, Adsorbent Material, Adsorption Isotherms, Langmuir, Adsorption Isotherm, Freundlich, Adsorption Potential. [8 hrs]
- Nucleation, Classical nucleation theory, Homogeneous nucleation, Heterogeneous nucleation, The spinodal region nucleation, Experiments on the of crystals. [10 hrs]
- Evaporation, Transpiration, Sublimation, Energy Balance Method, Aerodynamic method, Combined method. [$13\ hrs$]

Learning and Teaching Strategies						
	استراتيجيات التعلم والتعليم					
Strategies	 Explanation and clarification through lectures. Display scientific materials with projectors: data show, smart boards, plasma screens. Self-learning through homework and mini-projects within the lectures. Laboratories. 					

- 5- Graduation projects.
- 6- Scientific visits.
- 7- Seminars held in the department.
- 8- Summer training.

Assessment methods

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL)							
الحمل الدراسي للطالب							
Structured SWL (h/sem)	77	Structured SWL (h/w)	2				
الحمل الدراسي المنتظم للطالب خلال الفصل	77	الحمل الدراسي المنتظم للطالب أسبوعيا	3				
Unstructured SWL (h/sem)	40	Unstructured SWL (h/w)	2				
الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2				
Total SWL (h/sem)	125						
الحمل الدراسي الكلي للطالب خلال الفصل	125						

Module Evaluation						
	تقييم المادة الدراسية					
	· ·					
	Time/Nu	Weight (Marks)	Week Due	Relevant Learning		

		mber			Outcome
Formative assessment	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Thermodynamic, 1 and 2 law				
Week 2	Some thermodynamic relationship				
Week 3	Introduction to Reaction kinetics, Homogeneous reaction				
Week 4	Reversible reaction, Heterogeneous Reactions in metallurgical system), Rate Equation, Types of Reactions				
Week 5	Heat and Mass Transfer (Conduction, Convection and Radiation), Mass Transport in Heterogeneous Reactions				
Week 6	Diffusions (Diffusion in the solid state), Kirkendall Effect				
Week 7	Introduction to Electrochemistry or Electrometallurgy, Electrolytes (Classification of Electrolytes) and Electrodes				
Week 8	Conduction in electrolytes, Example of Electrolysis, Arrhenius Concept (Ionic Mobilities), Reduction and oxidation potentials: the standard potentials				

Week 9	Cell Types, Cell Design Optimization, Cell Operation,						
Week 10	The effects of polarization: decomposition voltage discharge potential, Electrowinning, Electrorefining						
Week 11	Introduction to Interfacial Phenomena, Surface energy, Surface tension						
Week 12	Adsorption, Adsorption Process, Adsorbent Material, Adsorption Isotherms, Langmuir, Adsorption Isotherm, Freundlich, Adsorption Potential						
Week 13	Nucleation, Classical nucleation theory, Homogeneous nucleation, Heterogeneous nucleation, The spinodal region, Experiments on the nucleation of crystals.						
Week 14	Evaporation, Transpiration, Sublimation, method.						
Week 15	Energy Balance Method, Aerodynamic method, Combined						

Delivery Plan (Weekly Lab. Syllabus)					
المنهاج الاسبوعي للمختبر					
	Material Covered				
Week 1	Concentration of chemical materials				
Week 2	Effect of temperature on density of liquids				
Week 3	Effect of concentration of the reaction rate				
Week 4	Determination of liquids Conductivity of				
Week 5	Electroplating				

Week 6	Determination of surface tension
Week 7	

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts	Chemical Metallurgy, by Chiranjib Kumar Gupta 2003	Yes
Recommended Texts	PHYSICAL CHEMISTRY, by ATKINS' 2008	No
Websites	Libraries sites in some scientific universities.	

Grading Scheme

مخطط الدرجات

Group Grade		up Grade التقدير Marks (%)		Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية							
Module Title	Mechanics of Materials			Modu	ıle Delivery		
Module Type	Basic learning ac			☑ Theory			
Module Code				☑ Lecture ☑ Lab			
ECTS Credits		6 ⊠ Tutorial					
SWL (hr/sem)		150			☐ Practical☐ Seminar		
Module Level U		UGx11 16	Semester of Delivery 3		3		
Administering Dep	partment	MAE	College	ENGINEERING			
Module Leader	AZZAM DAWC	OOD HASSAN	e-mail	AZZAM.HASSAN@UOBASRAH.EDU.IC		SRAH.EDU.IQ	
Module Leader's Acad. Title		ASST. Professor	Module Lea	ader's Qualification Ph.D.		Ph.D.	
Module Tutor Name (if available)		e-mail	E-mail				
Peer Reviewer Name		Name	e-mail	E-mail			
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0		

Relation with other Modules							
العلاقة مع المواد الدراسية الأخرى							
Prerequisite module	None	Semester					
Co-requisites module	None	Semester					

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتوبات الإرشادية

	اهداف الماده الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	The objective of this materials is to provide the future engineer with the means of analyzing and designing various machines and load-bearing structures. Both the analysis and the design of a given structure involve the determination of stresses and deformations. The Deflections resulting and the stresses and strains set up within bodies, are all considered in an attempt to provide sufficient knowledge to enable any component to be designed such that it will not fail within its service.				
	On successful completion of this course students will be able to:				
	Demonstrate an understanding of the concepts of stress and strain, and the stress-strain relationships for homogenous, isotropic materials.				
Module Learning Outcomes	2 Demonstrate an understanding of the relationships between loads, member forces and deformations and material stresses and strains in structural members under axial loading, torsion, flexural loadings, shear, and thin-walled pressure vessels.				
مخرجات التعلم للمادة الدراسية	3 Demonstrate an understanding of failure under complex stress states in structural members subjected to combined loadings.				
الدراسية	4 Apply the above understanding to the designs and analysis of structural members based on strength and deformation criteria.				
	5 Demonstrate an understanding of the assumptions and limitations of the theories used in mechanics of materials.				
	6 Demonstrate competence in problem identification, formulation and solution, and critical thinking.				
	Stress analysis				
Indicative Contents	Direct stress, direct strain, Hooke's Law, Young Modulus, double shear, factor of safety, temperature stresses. Compound bars.				
المحتويات الإرشادية	Shear force and bending moments diagrams				
	Concentrated load only, Distributed load, combined loads, points of contraflexure,				

inclined load, distributed loads of increasing value.

Slope And Deflection

Direct integration method, Macaulay's method, Mohr's "area-moment" method, Principle of superposition, Energy method, Maxwell's theorem.

Shear Stress Distribution

Distribution of shear stress due to bending, Application to different sections, Vertical and horizontal shear, Limitation of shear stress distribution theory

Bending, Simple bending theory

Bending of composite, combined loading, Shear stresses owing to bending, Strain energy in bending, Built-in beam carrying different load conditions, Advantages and disadvantages of built-in beams.

Learning and Teachi	ing Strategies
----------------------------	----------------

استراتيجيات التعلم والتعليم

- 1- Explanation and clarification through lectures.
- 2- Display scientific materials with projectors: data show, smart boards, plasma screens.
- 3- Self-learning through homework and mini-projects within the lectures.
- 4- Laboratories.

Strategies

- 5- Graduation projects.
- 6- Scientific visits.
- 7- Seminars held in the department.
- 8- Summer training.

Assessment methods

1- Short exams (Quiz).

- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL)							
الحمل الدراسي للطالب							
Structured SWL (h/sem)		Structured SWL (h/w)	_				
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	3				
Unstructured SWL (h/sem)		Unstructured SWL (h/w)					
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2				
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150						

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7

	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Types of Loads, Direct stress, Direct Strain, shear stress. Hooke's Law & Young's Modulus, Tensile Test				
Week 2	Stress-Strain Diagram, Ductility, Poisson's ratio				
Week 3	Shear strain, double shear stress , temperature stresses				
Week 4	Types of beams, types of load, Beam carries Concentrated load, distributed load				
Week 5	Beam carries Concentrated load, and distributed load				
Week 6	Beam carries trinagle load or non-linear load. Beam carries combined load				
Week 7	Bending of composite, combined loading, Shear stresses owing to bending,				
Week 8	Built-in beam carrying different load conditions, Advantages and disadvantages of built-in beams				
Week 9	Strain energy in bending,				
Week 10	Direct integration method, Macaulay's method				
Week 11	Mohr's "area-moment" method, Principle of superposition,				

Week 12	Energy method, Maxwell's theorem
Week 13	Distribution of shear stress due to bending
Week 14	Application to different sections, Vertical and horizontal shear
Week 15	Limitation of shear stress distribution theory Laser source, Electrochemical removal.

	Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1	TENSILE TEST			
Week 2	SHEAR FORCE AND BENDING MOMENT DIAGRAMS			
Week 3	BENDING TEST			
Week 4	TORSION TEST			
Week 5	DEFLECTION			
Week 6	DEFLECTION FOR CURVED BEAMS			
Week 7				

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text	Available in the Library?			

Required Texts	MECHANICS OF MATERIALS 1, E. J. HEARN	Yes
Recommended Texts		
Websites		

Grading Scheme						
	مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Thermodynamics and Fluid Mechanics			Modu	ıle Delivery	
Module Type	Basic learning ac	tivities			☑ Theory	
Module Code		MAE234			☑ Lecture☑ Lab☐ Tutorial☐ Practical☐ Seminar	
ECTS Credits		5				
SWL (hr/sem)		125				
Module Level		UGx11 17	Semester of Delivery		у	3
Administering De	partment	MAE	College ENGINEERING			
Module Leader			e-mail			
Module Leader's	Acad. Title	Lecturer	Module Lea	odule Leader's Qualification		Ph.D.
Module Tutor	or Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

Understanding Thermodynamic Principles: Provide students with a thorough understanding of the fundamental principles and concepts of thermodynamics, including the laws of thermodynamics, properties of substances, energy transfer, and thermodynamic processes.

Application of Thermodynamic Laws: Enable students to apply the laws of thermodynamics to analyze and solve problems related to energy conversion, heat transfer, and work interactions in various engineering systems.

Analysis of Thermodynamic Cycles: Familiarize students with different thermodynamic cycles, such as the Carnot cycle, Rankine cycle, and refrigeration cycles. The aim is to develop their ability to analyze and optimize the performance of thermal systems.

Fluid Properties and Behavior: Introduce students to the properties and behavior of fluids, including fluid statics, fluid flow, fluid dynamics, viscosity, and fluid pressure. The aim is to provide a foundation for understanding fluid mechanics.

Fluid Flow Analysis: Develop students' skills in analyzing fluid flow phenomena, such as laminar and turbulent flow, flow rate, pressure distribution, and flow measurement techniques. The aim is to enable them to analyze and design fluid systems and components.

Conservation Laws in Fluid Mechanics: Teach students the conservation laws, including mass, momentum, and energy conservation, and their application in solving fluid flow problems. The aim is to develop their ability to analyze fluid flow behavior and predict system performance.

Fluid Forces and Applications: Explore fluid forces, such as buoyancy, drag, and lift, and their applications in various engineering fields, including aerodynamics, hydrodynamics, and HVAC systems. The aim is to provide students with practical knowledge and applications of fluid mechanics.

Thermodynamics and Fluids in Engineering Systems: Integrate thermodynamic and fluid mechanics principles to analyze and design engineering systems, such as power plants, heat exchangers, turbines, pumps, and compressors. The aim is to enable students to understand and optimize the performance of these systems.

Problem-Solving and Analytical Skills: Develop students' problem-solving and

Module Aims

أهداف المادة الدراسية

	analytical skills through the application of thermodynamics and fluid mechanics principles to real-world engineering problems. The aim is to enhance their ability to analyze, evaluate, and propose solutions to complex engineering challenges.				
	Knowledge of Thermodynamic Principles: Develop a deep understanding of the fundamental principles and laws of thermodynamics, including the laws of thermodynamics, thermodynamic properties, energy transfer, and thermodynamic equilibrium				
	Understanding of Fluid Mechanics Concepts: Acquire a comprehensive understanding of fluid properties, fluid statics, fluid dynamics, fluid flow behavior, viscosity, and fluid pressure.				
Module Learning Outcomes	Application of Thermodynamics: Apply thermodynamic principles to analyze and solve problems related to energy conversion, heat transfer, and work interactions in various engineering systems.				
مخرجات التعلم للمادة الدراسية	Analysis of Thermodynamic Cycles: Analyze and evaluate the performance of different thermodynamic cycles, such as the Carnot cycle, Rankine cycle, and refrigeration cycles, and understand the impact of cycle parameters on system efficiency.				
	Fluid Flow Analysis: Analyze and calculate fluid flow phenomena, including laminar and turbulent flow, flow rate, pressure distribution, and flow measurement techniques. Understand the factors influencing fluid flow behavior.				
	Application of Conservation Laws: Apply the principles of conservation of mass, momentum, and energy to analyze and predict fluid flow behavior, pressure drop, and fluid forces in engineering systems.				
	Indicative content includes the following.				
Indicative Contents	5- Introduction to Reaction kinetics, Homogeneous reaction, Rate Reaction, Rate-Controlling Step, Order of Reaction (First-order, Second-Order), Reversible reaction, Heterogeneous Reactions in metallurgical system), Rate Equation, Types of Reactions, Heat and Mass Transfer (Conduction, Convection and Radiation), Mass Transport in Heterogeneous Reactions, Diffusions (Diffusion in the solid state), Kirkendall Effect				
المحتويات الإرشادية	Diffusions (Diffusion in the solid state), Kirkendall Effect 6- Introduction to Electrochemistry or Electrometallurgy, Electrolytes (Classification of Electrolytes) and Electrodes, Conduction in electrolytes, Example of Electrolysis, Arrhenius Concept (Ionic Mobilities), Reduction and oxidation potentials: the standard potentials, Cell Types, Cell Design Optimization, Cell Operation, The effects of polarization :decomposition voltage discharge potential, Electrowinning, Electrorefining. 7- Introduction to Interfacial Phenomena, Surface energy, Surface tension,				

- Interfacial energy of the other gas/liquid interface: the three phase interface.
- 8- Adsorabtion, Adsorption Process, Adsorbent Material, Adsorption Isotherms, Langmuir, Adsorption Isotherm, Freundlich, Adsorption Potential.
- 9- Nucleation, Classical nucleation theory, Homogeneous nucleation, Heterogeneous nucleation, The spinodal region, Experiments on the nucleation of crystals.
- **10-** Evaporation, Transpiration, Sublimation, Energy Balance Method, Aerodynamic
- 11- Pressure and velocity distributions
- 12- Pascal law, pressure head, manometers, piezometer, differential Manometer, inverted manometer, barometer, Bourdon Gauge, forces on immersed curved surfaces, equilibrium of flotation surfaces, pressure distribution,
- 13- Flow of Fluids
- 14- gas and liquid, ideal gas, gas mixture, enthalpy and entropy, phase transformation, constant temp. process, constant pressure process, isochoric process, adiabatic process, isotropic process, polytrophic process, control volume, Bernoulli equation, momentum and flow rate, Euler equation.
- 15- Non-dimensional Analysis
- 16- Flow in pipes, dimensional Analysis, laminar and turbulent flow, Rynold's number, boundary layers, pressure drop, friction losses, velocity distributions.

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
	Reading and self-learning.			
	Training and activities during lecture.			
Strategies	HomeWorks.			
	Suggesting some websites for extra reading.			
	Discussions and workshops.			

Student Workload (SWL)

الحمل الدراسي للطالب					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	77	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	3		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	10% (10) 5, 10 LO #1, 2, 10 and 2		
Formative assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
	Projects / Lab.					
	Report					
Summative assessment	Midterm Exam	1.5 hr	20% (10)	7	LO # 1-7	
	Final Exam	2hr	60% (50)	16	All	
Total assessment		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction and Basic Concepts				

	Thermodynamics and Energy, Systems and Control Volumes, State and Equilibrium,
Week 2	Processes and Cycles, The Steady-Flow Process,
Week 3	Zeroth Law of Thermodynamics, Variation of Pressure with Depth,
	Thermodynamics, Energy Balance, Energy Change of a System, ΔE system,
	Pressure Measurement Devices
Week 4	Energy Conversion and General Energy Analysis
	Forms of Energy,
Week 5	Types of Energy, Mechanical Forms of Work, The First Law of Phases of a Pure Substance
Week 6	Phase-Change Processes of Pure Substances, Saturated Liquid and Vapor, Property
	Diagrams,
Week 7	The T-s Diagram, The P-v Diagram, Enthalpy, Mixture, The Ideal-Gas Equation of State.
Week 8	Energy Analysis of Closed Systems
week o	Polytropic Process, Energy Balance for Closed Systems,
Week 9	Specific Heat Relations of Ideal Gases, Internal Energy,
Week 10	Enthalpy, and Specific Heat, The Second Law of Thermodynamics
	Thermal Energy Reservoirs, Heat Engines, Thermal Efficiency, The Second Law of
Week 11	Thermodynamics: Kelvin–Planck Statement, Refrigerators and Heat Pumps, Heat Pumps,
	Cycles.
	Entropy
Week 12	Entropy, Internally Reversible Processes, Entropy Change, The Entropy Change of Ideal
	Gases, Multistage Compression with Intercooling.
	Pressure and velocity distributions
Week 13	Pascal law, pressure head, manometers, piezometer, differential Manometer, inverted manometer,
	barometer, Bourdon Gauge, forces on immersed curved surfaces, equilibrium of flotation surfaces,
	pressure distribution,

Week 14	gas and liquid, ideal gas, gas mixture, enthalpy and entropy, phase transformation, constant temp. process, constant pressure process, isochoric process, adiabatic process, isotropic process, polytrophic process, control volume, Bernoulli equation, momentum and flow rate, Euler equation.
Week 15	Non-dimensional Analysis Flow in pipes, dimensional Analysis, laminar and turbulent flow, Rynold's number, boundary layers, pressure drop, friction losses, velocity distributions.

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					
Week 7					

Learning and Teaching Resources							
	مصادر التعلم والتدريس						
	Text	Available in the Library?					

Required Texts	Fluid and Thermodynamics Volume 1: Basic Fluid Mechanics	no
Recommended Texts	Thermodynamics	Yes
Websites		

Grading Scheme								
	مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition				
	A - Excellent	امتياز	90 - 100	Outstanding Performance				
Success Group	B - Very Good	جید جدا	80 - 89	Above average with some errors				
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors				
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings				
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria				
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded				
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required				

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Appl	lied Mathematics	s II	Modu	ıle Delivery	
Module Type		Basic			☑ Theory	
Module Code	E221		☑ Lecture☑ Lab			
ECTS Credits				☐ Tutorial ☐ Practical ☐ Seminar		
SWL (hr/sem)	125					
Module Level		19	Semester o	f Delivery 4		4
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Dr. Dhia Chasi	b Ali	e-mail	Dhai.ali	Dhai.ali@uobasrah.edu.iq	
Module Leader's	Acad. Title	lecturer	Module Lea	ule Leader's Qualification		Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules							
العلاقة مع المواد الدراسية الأخرى							
Prerequisite module	Applied Math-I	Semester	1 st				
Co-requisites module		Semester					

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	 To develop problem solving skills and understanding of analytical solutions To understand the different ways for solving engineering problems Increasing the opportunity for students to practice thinking methods, such as reflective, deductive, and inductive thinking. Increase pupils' skills needed to absorb what they are studying and to discover new relationships To understand Laplace transform, series analysis and solution of ordinary differential equations 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Recognize how deals with Laplace transform, series and triple integrals List the various types of governing system equations and trying to solve Summarize what is meant by Laplace transform, series and integrals Describe many types of equations, series and learn to solve Full knowledge of basic concepts, facts and theories in mathematics. Proving various mathematical problems. The ability to employ mathematics in various life issues. The ability to translate life issues into mathematical models. 				
Indicative Contents المحتويات الإرشادية	8. The ability to translate life issues into mathematical models. Indicative content includes the following. Part A – Laplace transform Laplace transform, gamma function and inverse Laplace transform [5 hrs] Theories 1 and 2 (5 hrs) Theories 3 and 4 (5 hrs) Theories 5 and 6 (5 hrs) Solution of ODE (5 hrs) Unit step functions (5 hrs) Part B – Series Sequences – Arithmetic and Engineering series (10 hrs) Convergence tests-alternating and power series, Taylor and Maclaurin (15 hrs) Part C – double & Triple Integrals Double integrals, Area of plane regions, volume, surface area, physical application volume and area in polar coordinate (15 hrs)				

Learning and Teaching Strategies استراتیجیات التعلم والتعلیم				
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.			

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	77	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation تقييم المادة الدراسية					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
		mber			Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	1	5% (5)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report				
Summative	Midterm Exam	2 hr	25% (25)	7	LO # 1-7
assessment	Final Exam	2 hr	60% (60)	16	All
Total assessme	Total assessment 100% (100 Marks)				

Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Laplace Transform for Functions – Gamma Function		
Week 2	Inverse Laplace Transform		
Week 3	Theory no. 1 and 2		
Week 4	Theory no. 3 and 4		
Week 5	Theory no. 5 and 6		
Week 6	Solution of ODE by Laplace Transform		
Week 7	Unit step functions		
Week 8	Sequences - converge and diverge – finding nth term		
Week 9	Series – Arithmetic series and geometric series		
Week 10	Convergence tests		
Week 11	Alternating series and power series		
Week 12	Taylor series and Maclaurin series		
Week 13	Double integral and volume- Area of plane region-		
Week 14	Volume, area and surface Area in polar coordinate		
Week 15	Physical Applications, Centroid and moment of inertia		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1			
Week 2			
Week 3			

Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
	Calculus	Yes		
Required Texts	By Ross L. Finney & George B. Thomas			
inequired rente	Calculus	yes		
	By B.G. Thomas	yes		
Recommended Texts	Calculus	Voc		
Recommended Texts	By Anton Bivens Davis	yes		
Websites				

Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Suggest Crown	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group FX – Fail		راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Engineering Materials Technology Module Delivery					
Module Type		Core			☑ Theory	
Module Code		MAE241			Lecture Lab	
ECTS Credits	5				☐ Tutorial ☐ Practical	
SWL (hr/sem)		125			☐ Seminar	
Module Level		UGx11 20	Semester o	of Delivery 4		4
Administering Dep	partment	Materials	College	Engineering		
Module Leader	Ahmad K. Jass	im	e-mail	ahmadl	kj1966@yahoo.c	om
Module Leader's	Acad. Title	Guest Lecture	Module Lea	ader's Qu	ualification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		1/06/2023	Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module None Semester				
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims					
أهداف المادة الدراسية	This course aims to teach the student how to select materials engineering for design and use as well as the main motivation of selection and selection process with some case study and applied CES Edu Pack software tutorial.				
	1- Ability to apply engineering and management principles, and knowledge of economic decision-making to manage projects.				
	2- Understanding of the impact of materials engineering solutions on the environment, and knowledge of materials and devices for sustainable development.				
Module Learning	3- An ability to identify, formulate, and solve engineering problems.				
Outcomes	4- Understanding of the impact of engineering solutions on society and the responsibilities of the discipline.				
مخرجات التعلم للمادة	5- The ability to design and select engineering materials for scientific and				
مخرجات التعلم للمادة الدراسية	industrial applications.				
	6- The ability to think about solving problems related to the use of				
	engineering materials and methods of avoiding them.				
	7- Writing scientific reports, reading blueprints and analyzing engineering				
	materials.				

	8- The ability to keep pace with developments in engineering materials and
Indicative Contents المحتويات الإرشادية	 Introduction of Engineering Materials Technology Furnaces Refractory Materials Casting Technology Forming Technology Coating Technology Welding technology Brazing soldering Cutting technology

Learning and Teaching Strategies استراتیجیات التعلم والتعلیم				
Strategies	 Explanation and clarification through lectures. Display scientific materials with projectors: data show, smart boards, plasma screens. Self-learning through homework and mini-projects within the lectures. present group Project in the class. 			

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	

Total SWL (h/sem)	150
الحمل الدراسي الكلي للطالب خلال الفصل	130

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction of Engineering Materials Technology [7 hrs].				
Week 2	Furnaces [7 hrs].				
Week 3	Furnaces [7 hrs].				
Week 4	Refractory Materials [7 hrs].				
Week 5	Casting Technology [7 hrs].				
Week 6	Casting Technology [7 hrs].				

Week 7	Forming Technology [7 hrs].
Week 8	Forming Technology [7 hrs].
Week 9	Coating Technology [7 hrs].
Week 10	Coating Technology [7 hrs].
Week 11	Welding Technology [7 hrs].
Week 12	Welding Technology [7 hrs].
Week 13	Brazing and Soldering [7 hrs].
Week 14	Cutting Technology [7 hrs].
Week 15	Cutting technology [7 hrs].
Week 16	Presentation by student [7 hrs].

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1	Casting Workshop			
Week 2	Forming workshop			
Week 3	Welding workshop			
Week 4	Welding Technology			
Week 5	Welding workshop			
Week 6	Cutting workshop			
Week 7	Cutting workshop			

Learning and Teaching Resources

مصادر التعلم والتدريس					
	Available in the Library?				
Required Texts	Engineering Materials Technology, Third Edition, W. Bolton	Yes			
Recommended Texts	 Manufacturing processing and system, Phillip F. Ostwald and Jairo Munoz, ninth edition Introduction to basic manufacturing processes and workshop technology, Rajender Sing, New Age International Publishers 	yes			
Websites					

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جید جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
. ,	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Eng	ineering Metallur	gy	Modu	ule Delivery	
Module Type		Core			☑ Theory	
Module Code		MAE242			Lecture Lab	
ECTS Credits	6				☐ Tutorial ☐ Practical ☐ Seminar	
SWL (hr/sem)	150					
Module Level		UGx11 21	Semester o	of Delivery 4		4
Administering Dep	partment	Materials	College	Engineering		
Module Leader	Nawal J. Han	nmadi	e-mail	nawalalmudeer@gmail.com		<u>com</u>
Module Leader's	Acad. Title	Assit. Professor	Module Lea	Module Leader's Qualification Ph.D.		Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Nu	on Number 1.0		

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents							
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية							
Module Aims أهداف المادة الدراسية	The objective of studying "Engineering Metallurgy" of (Ferrous and Non-Ferrous metals) is to recognize: 1.The Metallurgical Process Technology - Development of Iron & steel -Pig iron, 2.The manufacture of steel -The solidification process- Removal of deleterious elements such as sulfur - Temperature control - Carbon content control, 3.Precise addition of alloying elements,4.The microstructural nature of carbon steel,5.The"Hypo-eutectoid","Eutectoid",and"Hyper-euotectoid"Steels. 6.Construction of Equilibrium Phase Diagram 0-6.67% C,7.The multi-phase change as $(\alpha,\beta,\gamma,p$ & cm),8.Relationship of carbon content to mechanical properties, microstructure and mechanical properties, 9.Application and uses of carbon steel,10.Formation of alloy steel,11.Intermetallic compounds, 12.Eutectics and eutectoids 13.Hardening Processes,14.Eutectic and peritectic transformation.15.Cast iron and its modified types, 16.Alloy steels, 17.Additives 18.Copper & its alloys, 19. Aluminum & its alloys, 20.Surface Hardening 21.Welding						
Madula Lagueira	A- Knowledge and Understanding of "Engineering Metallurgy". A1.An ability to apply knowledge of metals phase equilibria on science, and engineering practice.						
Module Learning Outcomes	A2. An ability to design and conduct experimental testing, as well as to analyze and interpret the resultant data toward the corrective measures.						
مخرجات التعلم للمادة الدراسية	A3. An ability to investigate then to identify, formulate, and solve engineering problems on the basis of theoretical or experimental data deduced from plant operation and maintenance.						
	A4. An ability to use the techniques, skills, and modern engineering instruments and tools necessary for inspection and engineering practice.						

	B. Subject-specific skills
	B1. The ability to design and select engineering materials properly for scientific and industrial applications.
	B2. The ability to think about solving problems related to the use of
	engineering materials and methods of control to avoid metal/ alloy failure.
	B3. Writing scientific reports, reading blueprints and analyzing engineering
	materials.
	B4. The ability to keep pace with developments in engineering materials and
	their properties according to international standards.
	Indicative content includes the following: Part A – Solidification and Iron- carbon system
	Solidification of Metals and Alloys, Crystal Growth from the Liquid Phase, The Heat of
	Fusion and Vaporization, The Nature of the Liquid-Solid Interface
	Dendritic Growth in Pure Metals, Freezing in Alloys with Planar Interface, dendritic,
	freezing in alloys, Freezing of Ingots, The Grain Size of Castings, Segregation,
	Homogenization, Porosity.
	The Iron-Carbon Equilibrium Phase Diagram
	Carbon Steel , Phase diagram of steel, The eutectoid transformation of Austenite,
	The Growth of Pearlite, The Effect of Temperature on the Pearlite Transformation
	The Effects of Alloying Elements on the Growth of Pearlite, The Rate of Nucleation of
Indicative Contents	Pearlite
المحتويات الإرشادية	Time-Temperature-Transformation Curves, The Martensite Transformation in Steel
	Hardenability, The Variables that Determine the Hardenability of a Steel
	Tempering of Quenched steel
	Part B – Alloy steel and nonferrous alloys
	Tempering of Quenched steel
	Alloy Steel, The effect of alloying elements on the steel
	Low Alloy Steel, High Alloy Steel
	Cast Iron
	Copper and its Alloys
	Aluminum and its Alloys
	Titanium and its Alloys
	Superalloys
	Learning and Teaching Strategies
Strategies	استراتيجيات التعلم والتعليم
Dualegies	

1_	Exp	lanation	and	clarificati	on throu	igh lectures.
1 -	LAD	iananon	anu	Clarificati	on unot	ign icciuics.

- 2- Display scientific materials with projectors: data show, smart boards, plasma screens.
- 3- Self-learning through homework and mini-projects within the lectures.
- 4- Laboratories.
- 5- Graduation projects.
- 6- Scientific visits.
- 7- Seminars held in the department.
- 8- Summer training.

Assessment methods

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL) الحمل الدراسي للطالب					
Structured SWL (h/sem) 93 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا			
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation تقبيم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
Report 1 10% (10)				13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3 hr	50% (50)	16	All	
Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Solidification of Metals and Alloys, Crystal Growth from the Liquid Phase, The Heat of Fusion and Vaporization, The Nature of the Liquid-Solid Interface				
	Dendritic Growth in Pure Metals, Freezing in Alloys with Planar Interface, dendritic,				
Week 2	freezing in alloys, Freezing of Ingots,				
Week 3	The Grain Size of Castings, Segregation,				
WEEK 3	Homogenization, Porosity.				
Week 4	The Iron-Carbon Equilibrium Phase Diagram				
WCCK 4	Carbon Steel , Phase diagram of steel,				
Week 5	The eutectoid transformation of Austenite				
Week 6	The Growth of Pearlite, The Effect of Temperature on the Pearlite Transformation				
Week 7	The Effects of Alloying Elements on the Growth of Pearlite				
Week 8	The Rate of Nucleation of Pearlite				
Week 9	Time-Temperature-Transformation Curves, The Martensite Transformation in Steel				
,, con	Hardenability,				
Week 10	The Variables that Determine the Hardenability of a Steel				
	Tempering of Quenched steel				
Week 11	Alloy Steel, The effect of alloying elements on the steel				
Week 12	Low Alloy Steel, High Alloy Steel				

Week 13	Cast Iron
WCCK 13	Copper and its Alloys
Week 14	Aluminum and its Alloys
Week 15	Titanium and its Alloys
WCCK 13	Superalloys

Delivery Plan (Weekly Lab. Syllabus)					
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	1.Safety Regulations in the Lab. Work including: Electrical, Mechanical and Chemical				
WEEKI	Safety Regulations, 2.Recognition of metals and alloys, tools & Instruments available.				
Week 2	Microstructural examination of carbon steels of different grades.				
Week 3	Microstructural examination of cast iron of different grades(i.e.carbon content).				
Week 4	Microstructural examination of different types of copper alloys (brass, bronze, cuppro-nickel)				
vveek 4	compared to Al-alloys.				
Week 5	Microstructural examination of quenched pearlitic steel(i.e.the martensite &bainite)				
Week 6	Microstructural examination of carbon steels of annealing.				
Week 7	Microstructural examination of carbon steels after normalizing.				

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
		Available			
	Text	in the			
		Library?			
Required Texts	Engineering Metallurgy, Part I Applied physical Metallurgy, 6 ed., R.A. Higgins, 1999 Reprinted by Arnold (UK).	Yes			
Recommended Texts	D.R. Askeland and P.P.Phule "The Science and Engineering of Materials, 4 th ed., Thomson Academic Center, USA,2003.	Yes			
Websites	Libraries sites in some engineering and scientific universities.				

Grading Scheme

مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 – 100	Outstanding Performance.		
Success Green	B - Very Good	جيد جدا	80 – 89	Above average with some errors.		
Success Group (50 - 100)	C – Good	جيد	70 – 79	Sound work with notable errors.		
	D - Satisfactory	متوسط	60 – 69	Fair but with major shortcomings.		
	E - Sufficient	مقبول	50 – 59	Work meets minimum criteria.		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Stre	ength of Materia	als	Module Delivery		
Module Type	Basic learning ac	tivities		⊠ Theory		
Module Code	MAE243			☑ Lecture☑ Lab☑ Tutorial☐ Practical		
ECTS Credits	6					
SWL (hr/sem)		150			☐ Seminar	
Module Level		UGx11 22	Semester of Delivery 4		4	
Administering Dep	partment	MAE	College	ENGINEERING		
Module Leader	AZZAM DAWOOD HASSAN e-m			AZZAM.HASSAN@UOBA	SRAH.EDU.IQ	
Module Leader's Acad. Title ASST. Professor			Module Lea	ader's Qualification	Ph.D.	
Module Tutor	Name (if availa	able)	e-mail	E-mail		

Peer Reviewer Name	Name	e-mail	ail E-mail	
Scientific Committee Approval Date	01/06/2023	Version Nu	mber	1.0

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	The objective of this materials is to provide the future engineer with the means of analyzing and designing various machines and load-bearing structures. Both the analysis and the design of a given structure involve the determination of stresses and deformations. The Deflections resulting and the stresses and strains set up within bodies, are all considered in an attempt to provide sufficient knowledge to enable any component to be designed such that it will not fail within its service.				
Module Learning Outcomes	A- Knowledge and Understanding A1. An ability to apply knowledge of mathematics, science, and engineering.				
مخرجات التعلم للمادة الدراسية	A2. An ability to design and conduct experiments, as well as to analyze and interpret data.				
	A3. An ability to identify, formulate, and solve engineering				
126					

	Г
	problems.
	A4. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
	B. Subject-specific skills
	B1. The ability to design and select engineering materials for scientific and industrial applications.
	B2. The ability to think about solving problems related to the use of
	engineering materials and methods of avoiding them.
	B3. Writing scientific reports, reading blueprints and analyzing engineering materials.
	B4. The ability to keep pace with developments in engineering materials and their properties.
	The course include:
	Torsion
	Torsion theory, Polar second moment of area, Shear stress and shear strain in shafts, , Torsional rigidity, hollow shafts, thin-walled tubes, Composite shafts connections, Strain energy in torsion, Power transmitted by shafts, Combined stress systems.
	Thin Cylinders and Shells
Indicative Contents	Internal pressure, stresses, Thin rotating ring and spherical shell, pressure Vessels, Cylindrical vessel with hemispherical end, Effects of end plates and joints.
المحتويات الإرشادية	Thick cylinders
	Longitudinal stress, Maximum shear stress, Compound cylinders, Shrinkage or interference allowance, Compound cylinder -different materials, Thick cylinder - internal pressure only, Comparison with thin cylinder theory
	Complex Stresses
	Stresses on oblique planes, Material subjected to pure shear, two mutually perpendicular direct stresses, combined stresses, Graphical solution - Mohr 's stress circle, Three-dimensional stresses -graphical representation

Learning and Teaching Strategies

	استراتيجيات التعلم والتعليم				
Strategies	1- Explanation and clarification through lectures. 2- Display scientific materials with projectors: data show, smart boards, plasma screens. 3- Self-learning through homework and mini-projects within the lectures. 4- Laboratories. 5- Graduation projects. 6- Scientific visits. 7- Seminars held in the department. 8- Summer training. Assessment methods 1- Short exams (Quiz). 2- Homework. 3- Semester and final exams for theoretical and practical subjects. 4- Small projects within the lesson. 5- Interaction within the lecture. 6- Reports.				

Student Workload (SWL)

الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Torsion theory, Polar second moment of area, Torsional Strain energy in torsion,				

Week 2	Shear stress and shear strain in shafts,
Week 3	rigidity, hollow shafts, thin-walled tubes,
Week 4	Power transmitted by shafts, Combined stress systems.
Week 5	Internal pressure, stresses,
Week 6	Thin rotating ring and spherical shell, pressure Vessels
Week 7	Cylindrical vessel with hemispherical end
Week 8	Effects of end plates and joints.
Week 9	Longitudinal stress, Maximum shear stress,
Week 10	Compound cylinders,
Week 11	Shrinkage or interference allowance, Compound cylinder -different materials,
Week 12	Thick cylinder - internal pressure only, Comparison with thin cylinder theory
Week 13	Stresses on oblique planes, Material subjected to pure shear,
Week 14	two mutually perpendicular direct stresses, combined stresses,
Week 15	Graphical solution - Mohr 's stress circle, Three-dimensional stresses
	-graphical representation

	Delivery Plan (Weekly Lab. Syllabus)				
المنهاج الاسبوعي للمختبر					
	Material Covered				
Week 1	Curve beam TEST				
Week 2	Thin cylinder test				
Week 3	Thick cylinder TEST				

Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	MECHANICS OF MATERIALS 1, E. J. HEARN	Yes		
Recommended Texts				
Websites				

Grading Scheme							
	مخطط الدرجات						
Group	Grade التقدير Marks (%) Definition						
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			

Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Ba	asics of Matlab		Modu	le Delivery	
Module Type	Ba	sic learning activities	S		☐ Theory	
Module Code		MAE244			☐ Lecture	
ECTS Credits		4			□ Lab□ Tutorial	
SWL (hr/sem)		100			☐ Practical ☐ Seminar	
Module Level		UGx11 23	Semester o	Semester of Delivery 4		4
Administering Dep	partment	MAE	College Engeneening			
Module Leader	Esraa Habeeb	Kadhim	e-mail	esraa.ka	adham@uobasra	h.edu.iq
Module Leader's A	Acad. Title	Leacturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		Name	e-mail	E-mail		
Scientific Committee	01/06/2023	Version Nu	mber	1.0		

Date		
Date		

Relation with other Modules العلاقة مع المواد الدراسية الأخرى Prerequisite module None Semester Co-requisites module None Semester

Module Aims, Learning Outcomes and Indicative Contents							
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية							
Module Aims أهداف المادة الدراسية	MATLAB is a programming platform designed specifically for engineers and scientists to analyze and design systems and products that transform our world. The heart of MATLAB is the MATLAB language, a matrix-based language allowing the most natural expression of computational mathematics for which MATLAB is a proprietary multiparadigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages						
	Introduction and Basic Festures , Starting Matlab						
	2. Creating MATLAB expressions.						
	3. Hierarchy of arithmetic operations ,Entering multiple statements per line,						
Module Learning	Output display format.						
Outcomes	4. Mathematical functions						
	5. Basic Plotting, Introduction, Specifying line styles and colors, Multiple data						
	sets in one plot, Plotting multiple plots seprately, Create graph with two y-						
مخرجات التعلم للمادة الدراسية	axes						
الدراسية	6. Loops and Controlling Command						
	7. Matrix, Entering a vector, Entering a matrix						
	8. Matrix indexing, Colon operator, Linear spacing Colon operator in a matrix.						
	Creating a sub-matrix, Deleting row or column, Dimension, Continuation.						
	Transposing a matrix, Concatenating matrices						
	9. Array operations, Reshaping arrays. Rotating matrices and arrays, Solving						

	linear equations, Differentiating and integrating symbolic expressions 10. Programming in MATLAB (M-File), M-File Scripts, M-File functions, . Input and output arguments, Input and output to a script file, Input and output to a function file, Output commands
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. -MATLAB: Introduction and Basic Festures, Starting Matlab, Creating MATLAB expressions, Hierarchy of arithmetic operations, Entering multiple statements per line, Output display format. Mathematical functions Basic Plotting, Introduction, Specifying line styles and colors, Multiple data sets in one plot, Plotting multiple plots seprately, Create graph with two y-axes Loops and Controlling Command, Matrix, Entering a vector, Entering a matrix Matrix indexing, Colon operator, Linear spacing Colon operator in a matrix. Creating a sub-matrix, Deleting row or column, Dimension, Continuation. Transposing a matrix, Concatenating matrices Array operations, Reshaping arrays. Rotating matrices and arrays, Solving linear equations, Differentiating and integrating symbolic expression Programming in MATLAB (M-File), M-File Scripts, M-File functions, . Input and output arguments, Input and output to a script file, Input and output to a function file, Output commands

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم					
Strategies	 Explanation and clarification through lectures. Self-learning through homework and mini-projects within the lectures. Laboratories. Graduation projects. Scientific visits. 				

Student Workload (SWL)						
الحمل الدراسي للطالب						
Structured SWL (h/sem)		Structured SWL (h/w)	_			
الحمل الدراسي المنتظم للطالب خلال الفصل	62	الحمل الدراسي المنتظم للطالب أسبوعيا	2			
Unstructured SWL (h/sem)	20	Unstructured SWL (h/w)	2			
الحمل الدراسي غير المنتظم للطالب خلال الفصل	38	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2			
Total SWL (h/sem)	100					
الحمل الدراسي الكلي للطالب خلال الفصل	100					

تقييم المادة الدراسية								
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome			
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11			
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7			
assessment	Projects / Lab.	1	10% (10)	Continuous				
	Report	1	10% (10)	13	LO # 5, 8 and 10			
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7			

Module Evaluation

assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري **Material Covered** Week 1 Introduction and Basic Festures, Starting Matlab, Creating MATLAB expressions. Week 2 Hierarchy of arithmetic operations ,Entering multiple statements per line, Output display format Mathematical functions Week 3 Basic Plotting, Introduction, Specifying line styles and colors, Multiple data sets in one plot, Week 4 Plotting multiple plots separately, Create graph with two y-axes Array operations, Reshaping arrays. Rotating matrices and arrays, Solving linear equations, Week 5 Differentiating and integrating symbolic expressions Programming in MATLAB (M-File), M-File Scripts, M-File functions, . Input and output Week 6 arguments, Input and output to a script file, Input and output to a function file, Output commands Week 7 Mid-term Exam+ Debugging M-File GUI (Graphical User Interface) Week 8 Programming the GUI, Saving and running a GUI Week 9 Week 10 String Statement, Library Functions Week 11 Cell Arrays Week 12 **System Identification Simulation** SWITCH-CASE, IF-ELSE-END Week 13 Week 14 Insert System Object Code Using MATLAB Editor.

Week 15	Anonymous Functions .
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
المنهاج الاسبوعي للمختبر					
	Material Covered				
Week 1	Lab 1: Introduction in MATLAB				
Week 2	Lab 2: Entering multiple statements per line & Mathematical Function				
Week 3	Lab 3: Basic Plotting, Multiple data sets in one plot, Plotting multiple plots separately, Create graph with two y-axes.				
Week 4	Lab 4: Array operations, Reshaping arrays. Rotating matrices and arrays, Solving linear equations, Differentiating and integrating symbolic expressions				
Week 5	Lab 5: Programming in MATLAB (M-File),				
Week 6	Lab 6: Debugging M-File				
Week 7	Lab 7: GUI (Graphical User Interface) & System Identification Simulation				

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	MATLAB Help Version 6.5	Yes			
Recommended Texts	الدليل المرجعي والتعليمي، المهندس عبد الكريم البيكو، (دار شعاع للنشر) MATLAB 6.5 www.mathworks.com	Yes			

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية					
Module Title	Basics of Matlab			Module Delivery	
Module Type	Basic learning activities		√ Theory √ Lecture √ Lab □ Tutorial		
Module Code	MAE245				
ECTS Credits	4				
SWL (hr/sem)	100		☐ Practical ☐ Seminar		
Module Level	UGx11 Semester of		Delivery	4	

Administering Department		MAE	College	College Engeneening		
Module Leader	Esraa Habeeb Kadhim		e-mail	esraa.kadham@uobasrah.edu.iq		h.edu.iq
Module Leader's Acad. Title Leacturer		Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number		1.0	

Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	le Aims, Learning Outcomes and Indicative Contents
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدراسية	Learn AutoCAD software fundamentals Problem solving Effective communication Critical thinking Graphical Communications with manufacturing and construction personnel using graphical representations of physical objects.
Module Learning Outcomes	Utilize the power and precision of AutoCAD as a drafting and design tool used in the mechanical design and manufacturing industries. Apply basic CAD concepts to develop and construct accurate 2D geometry through creation of basic geometric constructions.

مخرجات التعلم للمادة الدراسية	Create, manipulate and edit 2D , 3D drawings and figures. Apply elements of mechanical drafting such as layers, dimensions, drawing formats, and 2D , 3D figures in projects.
Indicative Contents المحتويات الإرشادية	Provide lectures using AutoCAD software, demonstrating commands via user interface and typed commands. Use examples and projects seen in the CAD and drafting industry. Demonstrate AutoCAD commands and workflow through lecture and videos. Show industry standard procedures to solve various drafting and CAD related industry problems. Oversee open lab time to assist students in assigned projects. Use questions and reinforce lecture material for guiding students to complete projects.

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	 Explanation and clarification through lectures. Self-learning through homework and mini-projects within the lectures. Laboratories. Graduation projects. Scientific visits. 	

Student Workload (SWL)			
	راسي للطالب	الحمل الدر	
Structured SWL (h/sem)	62	Structured SWL (h/w)	2
الحمل الدراسي المنتظم للطالب خلال الفصل		الحمل الدراسي المنتظم للطالب أسبوعيا	

Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	38	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	100		

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus) ## Delivery Plan (Weekly Syll

Week 6	Drawing Lines in AutoCAD, Coordinate Systems, Object Selection Methods.3-DIMENSIONS
Week 7	STARTING WITH ADVANCED SKETCHING
Week 8	Drawing Arcs, Drawing Rectangles, ,
Week 9	Drawing Ellipses, Drawing Regular Polygon
Week 10	Drawing Poly lines
Week 11	Placing Points, Drawing Infinite Lines, Writing a Single Line Text
Week 12	BASIC DIMENSIONING, GEOMETRIC DIMENSIONING, AND TOLERANCING
Week 13	MODEL SPACE VIEWPORTS
Week 14	PAPER SPACE VIEWPORTS
Week 15	LAYOUTS PLOTTING DRAWINGS
Week 16	

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Lab 1: Introduction in AUTOCAD				
Week 2	Lab 2: Entering multiple statements per line & Mathematical Function				
Week 3	Lab 3: Basic Plotting, Multiple data sets in one plot, Plotting multiple plots separately, Create graph with two DIMENSIONS.				
Week 4	Lab 4: Drawing Arcs, Drawing Rectangles, Drawing Ellipses, Drawing Regular Polygon				
Week 5	Lab 5: Drawing Polylines, Placing Points, Drawing Infinite Lines, Writing a Single Line Text				
Week 6	Lab 6:BASIC DIMENSIONING, GEOMETRIC DIMENSIONING, AND TOLERANCING				
Week 7	Lab 7: ODEL SPACE VIEWPORTS, PAPER SPACE VIEWPORTS, AND LAYOUTS PLOTTING DRAWINGS				

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts	AutoCAD 2022 Instructor: A Student Guide for In-Depth Coverage of AutoCAD's Commands and Features James Leach, Shawna Lockhart	
Recommended Texts		

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
G. 64.P	0.000	J	11101110 (70)	
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance
	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Engineering Analysis		Modu	Module Delivery		
Module Type	Basic learning activities			☑ Theory		
Module Code	E351			☑ Lecture☐ Lab		
ECTS Credits		6		☐ Tutorial		
SWL (hr/sem)		150		☐ Practical ☐ Seminar		
Module Level		25	Semester of Delivery 5		5	
Administering Department		MAE	College	ENGINEERING		
Module Leader	Imad Obaid Al	-Fahad	e-mail emad.bajee@uobasrah.edu.iq		<u>edu.iq</u>	
Module Leader's Acad. Title		Lecturer	Module Lea	Module Leader's Qualification		Ph.D.
Module Tutor	Name (if availa	able)	e-mail	-mail E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	 Preparing and qualifying engineers to meet the requirements of the labor market in the private and public sectors in materials engineering. Providing distinguished academic programs in the field of materials engineering, both theoretical and practical, that comply with international standards of academic quality and meet the needs of the labor market. Developing and improving scientific research in the fields of materials engineering, writing programs for solving differential equations and complex functions, data processing, digital signal analysis and control. Preparing a stimulating environment for faculty members to develop their knowledge and educational and research skills. 				
	5. Building and developing partnerships with the governmental and private sectors and the community with all its various institutions.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	A. Knowledge and Understanding A1- Clarify the basic concepts of Engineering Analysis and their applications in social and industrial fields. A2- Acquiring the skill in dealing with and addressing problems through the acquired sciences in this field. A3- Acquisition of basic skills to solve engineering problems. A4- Gaining experience in describing engineering problems mathematically and finding related equations to solve them. B. Subject-specific skills B1 - The ability to solve mathematical equations. B 2 - The ability to think about addressing problems according to the algorithms and methods of their work. B 3 - Writing scientific reports, reading charts, and analyzing digital data.				
Indicative Contents المحتويات الإرشادية	Complex variables (50 hrs.) Complex number and variable operations, derivative and analytic functions, Cauchy Riemann equation, geometry of analytic function. Complex integration Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, derivatives of analytic functions.				

Fourier series (40 hrs.)

Periodic functions, Fourier series, even and odd functions, half range expansion, complex Fourier series, Fourier integral, Fourier cosine and sine transforms, Fourier transform.

Laplace Transform of Special Functions and Cases (20 hrs.)

Laplace Transform of Special Functions such as unit step, periodic function and Cases **Inverse Laplace Transform**

Partial Differential Equations (40 hrs.)

Basic concept, modeling vibrating string, wave equation, heat equation, separation of variables, D'Alembert solution of the wave equation, modeling of membrane 2D wave equation, rectangular membrane, Laplacian in polar coordinate, solution by Laplace transform.

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Teaching and Learning Methods

- 1. Explanation and clarification through lectures.
- 2. Using data show, smart boards, and plasma screens.
- 3. Self-learning through homework and mini-projects within the lectures.
- 4. Laboratories.
- 5. Graduation projects.
- 6. Scientific visits.

Strategies

- 7. Seminars held in the department.
- 8. Mid-term and summer training.

Assessment methods

- 1. Short exams (quizzes).
- 2. Homework.
- 3. Semester and final exams for theoretical and practical subjects.
- 4. Small projects within the lesson.
- 5. Interaction within the lecture.

146

6. Reports

Student Workload (SWL)					
الحمل الدراسي للطالب					
Structured SWL (h/sem)	0.2	Structured SWL (h/w)			
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	50	Unstructured SWL (h/w)	2		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

	Material Covered
Week 1	Complex Functions
Week 2	Special Complex Functions
Week 3	Continuity and Differentiation
Week 4	Cauchy-Riemann Equations
Week 5	Complex Integration
Week 6	Fourier Series
Week 7	Complex Fourier Series
Week 8	Laplace Transform of Special Functions and Cases
Week 9	Inverse Laplace Transform
Week 10	Ordinary Differential Equations
Week 11	Solution of ODE
Week 12	Partial Differential Equation
Week 13	Using Separation of Variables to Solve PDE (Solution of 1-Dim wave equation)
Week 14	Solution of 1-Dim Diffuse Equation
Week 15	Solution of 2-Dim Laplace Equation

Delivery Plan (Weekly Lab. Syllabus)

المنهاج الاسبوعي للمختبر

	Material Covered
Week 1	
Week 2	
Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources						
	مصادر التعلم والتدريس					
Text Available in the Library?						
	1.Advanced Engineering Mathematics, Wylie, McGraw Hill Books Company.					
Required Texts	2.Advanced Engineering Mathematics, Kreyszig, Jon Wylie and Sons.	Yes				
	3. Mathematical Methods for Engineers and					
	Scientists, K. T. Tang					
Recommended Texts						
Websites						

Grading Scheme

		. الدرجات	مخطط	
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information						
	معلومات المادة الدراسية					
Module Title	Beha	Behavior of Engineering Materials I Module Delivery				
Module Type	Core		☑ Theory			
Module Code	MAE351					
ECTS Credits	6			☐ Tutorial		
SWL (hr/sem)	150			□ Practical□ Seminar		
Module Level	31 Semester of		Delivery	6		

Administering Department		Type Dept. Code	College	Type College Code		
Module Leader	Name		e-mail	E-mail		
Module Leader's Acad. Title Professor		Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Na	nme Name		e-mail	E-mail		
Scientific Committee Date	Scientific Committee Approval Date 01/06/202		Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module None Semester				
Co-requisites module None Semester				

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	 Understanding Failure Mechanisms: The module aims to provide students with a comprehensive understanding of the different failure mechanisms that can occur in engineering materials, such as fracture, fatigue, creep, corrosion, and wear. Students will learn about the causes, modes, and characteristics of these failures. Failure Analysis Techniques: The module aims to introduce students to various failure analysis techniques used to investigate and determine the root causes of material failures. Students will learn about experimental and analytical methods, including microscopy, spectroscopy, mechanical testing, and non-destructive testing, to analyze failed components and identify failure modes. Fracture Mechanics: The module aims to provide students with a deep understanding of fracture mechanics principles and their application in 				

- predicting the behavior of cracked materials. Students will learn about stress analysis, crack propagation, fracture toughness, and the importance of designing against brittle fracture.
- IV. Fatigue and Creep: The module aims to educate students about the phenomena of fatigue and creep, which are time-dependent failures. Students will learn about the factors influencing fatigue and creep, fatigue life estimation methods, and strategies to prevent fatigue and creep failures in engineering materials.
- V. Corrosion and Wear: The module aims to introduce students to corrosion and wear mechanisms, which can lead to material degradation and failure. Students will learn about different types of corrosion and wear, factors affecting their occurrence, and techniques to prevent or mitigate their effects.
- VI. Case Studies and Failure Prevention: The module aims to engage students with real-world case studies of material failures in engineering applications. Students will analyze these failures, identify the root causes, and propose strategies for failure prevention and improved material selection and design.
- VII. Safety and Ethical Considerations: The module aims to raise awareness among students about the ethical responsibilities of engineers in ensuring the safety and reliability of engineered materials and structures.
- VIII. Communication and Reporting: The module aims to develop students' ability to effectively communicate their findings and recommendations related to material failures. Students will learn how to write technical reports, present their analyses, and convey complex information to various stakeholders.

Module Learning Outcomes

مخرجات التعلم للمادة الدراسية

- A. Knowledge Acquisition: Students should demonstrate a comprehensive understanding of the different failure mechanisms that can occur in engineering materials, including fracture, fatigue, creep, corrosion, and wear. They should possess knowledge of the causes, modes, characteristics, and influencing factors of these failures.
- B. Failure Analysis and Investigation: Students should have the skills to perform failure analysis of engineering materials using appropriate techniques and methodologies. They should be able to investigate failed components, conduct laboratory tests, analyze experimental and analytical results, and determine the root causes of material failures.
- C. Material Testing and Characterization: Students should be proficient in conducting mechanical tests and characterizing engineering materials. They should be able to perform tests such as tensile, hardness, and impact tests, and interpret the results to evaluate material properties, performance, and failure susceptibility.
- D. Fracture Mechanics: Students should possess a deep understanding of fracture mechanics principles and their application in predicting the behavior

of cracked materials. They should be able to analyze stress distribution, assess crack propagation, calculate fracture toughness, and design against brittle fracture.

- E. Fatigue and Creep Analysis: Students should be able to analyze fatigue and creep failures in engineering materials. They should understand the factors influencing fatigue and creep behavior, estimate fatigue life, and propose strategies to prevent or mitigate fatigue and creep failures.
- F. Corrosion and Wear Assessment: Students should be able to assess corrosion and wear mechanisms and their effects on engineering materials. They should understand different types of corrosion and wear, evaluate factors contributing to their occurrence, and recommend measures to prevent or mitigate corrosion and wear failures.
- G. Case Studies and Failure Prevention: Students should be capable of analyzing real-world case studies of material failures in engineering applications. They should identify the root causes of failures, propose strategies for failure prevention, and suggest improved material selection and design practices.
- H. Safety and Ethical Considerations: Students should demonstrate an understanding of the ethical responsibilities of engineers in ensuring the safety and reliability of materials and structures. They should be aware of safety standards, codes of conduct, and regulations related to materials selection and failure prevention.
- Communication and Reporting: Students should be proficient in effectively communicating their findings and recommendations related to material failures. They should be able to write technical reports, present complex information, and convey their analyses to diverse stakeholders.

Indicative content includes the following.

Indicative Contents المحتوبات الإرشادية

Introduction to Failure Analysis and Fracture Mechanics, Importance of failure analysis in engineering, Usual causes of mechanical failure, The general types of mechanical failure, General steps of failure investigation

Fracture Mechanics, Fracture mechanics analysis, Basics of Fracture Toughness, Griffith Energy Criteria, Fracture modes, Linear-Elastic Fracture Mechanics, Crack Tip Stresses, Plane strain and plane stress concept, Stress intensity factor, Relationship between fracture and the stress intensity factor

Fracture Toughness Testing, Crack plane orientation, K Computation, Plastic-zone considerations,

Yield Strength influences, Specimen Thickness, Test Procedure, Fracture toughness specimen preparation, load measurement and validation criteria, crack depth measurements and validation criteria, the provisional fracture toughness measurements and validation criteria, ASTM Standard E399 requirements.

Modes of fracture, Fracture Morphology and Fractography, Ductile fracture characterization, Moderately ductile fracture, Stable and unstable crack, Ductile Fracture Morphology, Brittle Fracture characterization, Brittle Fracture Fractography, Brittle fracture initiation and propagation

Fatigue Failure: Fatigue phenomenon and fatigue life estimation, S-N curves and fatigue strength, Factors affecting fatigue behavior: stress, surface finish, environment and Fatigue testing and analysis techniques.

Creep, Creep Stages, Primary creep characterization, Secondary creep characterization, Tertiary creep characterization, Effect of Temperature & Stress on creep, identification of failures caused by creep,

Mechanisms of deformation, Bulk Diffusion (Nabarro-Herring creep), Grain Boundary Diffusion (Coble creep), Dislocation climb/creep, Thermally activated glide, General Mechanisms of Creep, Dislocation slip, Climb, Grain-boundary sliding, Diffusion flow caused by vacancies.

Material Testing and Characterization: Mechanical testing: tensile, hardness, impact, fatigue tests, Microstructural characterization: microscopy techniques (optical, electron) and Chemical analysis techniques: spectroscopy, X-ray diffraction (XRD) and Non-destructive testing (NDT) methods and their applications.

Failure Analysis Techniques: Overview of failure analysis techniques, Microscopic examination and sample preparation, Spectroscopic analysis: SEM-EDS, X-ray spectroscopy and Mechanical testing for failure analysis.

Case Studies and Failure Analysis Reports: Analysis of real-world case studies of material failures, Root cause identification and analysis and Preparation of failure analysis reports .

Safety and Ethical Considerations in Failure Prevention: Safety standards, regulations, and codes of conduct, Ethical responsibilities in failure prevention and materials selection and Environmental and societal impact of material failures.

Communication and Presentation Skills: Technical report writing for failure analysis, Effective communication of failure analysis findings and Presentation skills for sharing failure analysis results.

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

	Module Evaluation						
	تقييم المادة الدراسية						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning		
		mber	weight (warks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction to Failure Analysis and Fracture Mechanics, Importance of failure analysis in engineering, Usual causes of mechanical failure, The general types of mechanical failure, General steps of failure investigation			
Week 2	Failure Due to Fracture, Modes of fracture, Fracture Morphology and Fractography.			
Week 3	Fracture Mechanics, Fracture mechanics analysis, Basics of Fracture Toughness, Griffith Energy Criteria, Fracture modes, Linear-Elastic Fracture Mechanics, Crack Tip Stresses, Plane strain and plane stress concept, Stress intensity factor, Relationship between fracture and the stress intensity factor Fracture Toughness Testing,			

Week 4	Crack plane orientation, K Computation, Plastic-zone considerations, Yield Strength influences, Specimen Thickness, Test Procedure, Fracture toughness specimen preparation, load measurement and validation criteria, crack depth measurements and validation criteria, the provisional fracture toughness measurements and validation criteria, ASTM Standard E399 requirements.			
Week 5	Modes of fracture, Fracture Morphology and Fractography, Ductile fracture characterization, Moderately ductile fracture, Stable and unstable crack, Ductile Fracture Morphology, Brittle Fracture characterization, Brittle Fracture Fractography, Brittle fracture initiation and propagation			
Week 6	Fatigue, S–N Curve, Fatigue limit, Fatigue strength and Fatigue life, Fatigue Crack stages			
Week 7	Fatigue Crack propagation by blunting and sharpening process, Microscopic Characteristics of Fatigue Fracture, Striations, Macroscopic Characteristics of Fatigue Fracture, Beach marks Ratchet marks, Fatigue Crack Growth Life, Crack Length rate Measurement			
Week 8	Wear, Abrasive wear (Erosive wear, Grinding wear and Gouging wear), Adhesive wear and Fretting wear			
Week 9	Contact stress fatigue, Subsurface-origin fatigue, Surface-origin fatigue, Subcase-origin fatigue, Cavitation fatigue			
Week 10	Creep, Creep Stages, Mechanisms of deformation, General Mechanisms of Creep			
Week 11	Mechanical Destructive Testing, Tensile Testing, Compression Test, Mechanical testing: tensile, hardness, impact, fatigue tests			
Week 12	Failure Analysis Techniques, Overview of failure analysis techniques, Microscopic examination and sample preparation, Spectroscopic analysis: SEM-EDS, X-ray spectroscopy			
Week 13	Case Studies and Failure Analysis Reports, Analysis of real-world case studies of material failures, Root cause identification and analysis, Preparation of failure analysis reports			
Week 14	Safety and Ethical Considerations in Failure Prevention, Safety standards, regulations, and codes of conduct, Ethical responsibilities in failure prevention, Environmental and societal impact of material failures			
Week 15	Communication and Presentation Skills, Technical report writing for failure analysis, Effective communication of failure analysis findings			

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1					
Week 2					

Week 3	
Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Library?					
Required Texts	"Fundamentals of Engineering Materials" by Thornton, Peter A., and Vito J. Colangelo (1985).	Yes			
Recommended Texts	"Materials Selection and Design" by M. A. Maleque and M. S. Salit (2013).	Yes			
Websites					

Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Croup	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title		Heat Treatments		Mod	ule Delivery	
Module Type		Core			☑ Theory	
Module Code		MAE352				
ECTS Credits		6			☐ Tutorial	
SWL (hr/sem)		150			☐ Practical☐ Seminar	
Module Level		26	Semester o	f Delivery 5		5
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Name		e-mail	E-mail		
Module Leader's	Module Leader's Acad. Title Professor		Module Lea	ader's Q	ualification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail			
Scientific Committee Approval Date 01/06/2023		Version Nu	mber	1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module None Semester				
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents

	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدراسية	 To develop problem solving skills and understanding of heat treatments methods of metals and their alloys through the application of techniques. To understand annealing, normalizing and hardening treatments that can applied to metals and metals alloys. This course deals with the basic concept of heat treatments of ferrous and non-ferrous metal alloys. This is the basic subject for all heat treatments types. To understand the response of metal alloys to heat treatments. To understand how can applied it to improving the mechanical properties.
Module Learning Outcomes قمخرجات التعلم للمادة الدراسية	 A. Recognize how heat treatments applied to most of ferrous and non-ferrous alloys. B. List the various types of heat treatments and their effects. C. Summarize what is meant by heat treatable alloys. D. Discuss the effects of alloying systems in the response of alloy to heat treatments. E. Describe heat treatments of ferrous alloys, their aim, and their resulting effect on both microstructure and mechanical properties. F. Define hardenability. G. Identify the basic requirement to heat treatments. H. Discuss the the thermochemical treatments. I. Discuss the precipitation hardening, martensitic transformation, and work hardening in non-ferrous metal alloys. J. Explain the effect associated with martensitic transformation (Hardening treatments) in some non-ferrous alloy.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part I- heat treatments of ferrous alloys. Fundamentals of the heat treatment of Ferrous alloys, classification of ferrous metal alloys, steel, metallurgical phenomena, constitution of iron, alloying mechanisms of steel, iron cementite phase diagram, transformation of austenite [15 hrs] Introduction to Heat treatments, heat treatment processes, annealing treatments, normalizing, isothermal and continuous cooling transformations, hardening and tempering, hardenability, retained austenite and sub-zero treatment, austemper and

martemper [15 hrs]

Chemical heat treatment, theory of chemical heat treatment, case hardening, carborizing, post carborizing heat treatments, cyaniding, nitriding, nitrocarborizing and carbonitiding. [6 hrs]

Heat treatments of commercial ferrous alloys, plain carbon steels, alloy steels, effect of alloying elements [15 hrs]

Heat treatments of Cast iron, iron-graphite phase diagram, heat treatments of white cast iron, gray iron, ductile cast iron, malleable cast iron. [6 hrs]

Part II— heat treatments of non ferrous metals and their alloys

Fundamental heat treatments of non-ferrous metals and alloys, work hardening, annealing, basic requirements for hardening by precipitation hardening, precipitation hardening, martensitic transformation. [15 hrs]

Heat treatments of copper and their alloys, heat treatments of copper metal, heat treatments of brass alloys, heat treatments of bronze alloys, heat treatments of aluminum alloy, heat treatable Al-alloys and non-heat treatable A-alloys

[9hrs]

Heat treatments of titanium alloys , heat treatments of nickel alloys , nitinol alloys and their heat treatments [15 hrs]

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
Strategies	Type something like: The main strategy that will be adopted in delivering this module			

is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)					
	راسي للطالب	الحمل الدر			
Structured SWL (h/sem)	0.2	Structured SWL (h/w)	4		
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	F0	Unstructured SWL (h/w)	2		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem)	150				
الحمل الدراسي الكلي للطالب خلال الفصل	130				

	تقييم المادة الدراسية						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		

Module Evaluation

assessment	Final Exam	2hr	50% (50)	16	All
Total assessme	Total assessment		100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction - Fundamentals of the heat treatment of Ferrous alloys, classification of ferrous metal				
	alloys, steel, why steel is important, metallurgical phenomena,				
Week 2	Constitution of iron , alloying mechanisms, iron cementite phase diagram, transformation of				
	austenite				
Week 3	Introduction to Heat treatments, heat treatment processes, annealing treatments, normalizing,				
Week 4	isothermal and continuous cooling transformations , hardening and tempering,				
Week 5	hardenability, retained austenite and sub-zero treatment, austemper and martemper				
Week 6	Chemical heat treatment, theory of chemical heat treatment, case hardening, carborizing,				
Week 7	Mid-term Exam + post carborizing heat treatments, cyaniding, nitriding, nitrocarborizing and				
	carbonitiding.				
Week 8	Heat treatments of commercial ferrous alloys, plain carbon steels				
Week 9	alloy steels, effect of alloying elements				
Week 10	Heat treatments of Cast iron				
Week 11	Fundamental heat treatments of non-ferrous metals and alloys, work hardening, annealing,.				
Week 12	basic requirements for hardening by precipitation hardening, precipitation hardening, martensitic				
Week 12	transformation				
Week 13	Heat treatments of copper and their alloys and heat treatment of aluminum alloys				
Week 14	Heat treatments of titanium alloys				
Week 15	heat treatments of nickel alloys , nitinol alloys and their heat treatments				

Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر			
Material Covered			
Lab 1: annealing and normalizing			
Lab 2: hardening and tempering			
Lab 3: end quenched test(hardenability test)			
Lab 4: case hardening			
Laber of the books of the			
Lab 5: surface hardening			
Lab Conveninitation boundaries			
Lab 6: precipitation hardening			
Lah 7: martancitic transformation in conner alloy			
Lab 7: martensitic transformation in copper alloy			

Learning and Teaching Resources مصادر التعلم والتدريس Text Available in the Library? Required Texts Heat Treatment Principles and Techniques ,second edition, T.V. Rajan, C.P. Sharma and Ashok Sharma Yes Recommended Texts Materials Science and Engineering, 10th edition, WILLIAM D. CALLISTER, JR. and DAVID G. RETHWISCH No

Grading Scheme
مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية		
Module Title	Corrosion I	Module Delivery
Module Type	Core	☑ Theory

Module Code	MAE353					
ECTS Credits	6				☐ Tutorial	
SWL (hr/sem)	150				☐ Practical ☐ Seminar	
Module Level		28	Semester o	f Deliver	у	5
Administering Dep	epartment Materials		College	Engineering		
Module Leader	Adnan S. Jabur		e-mail	adnan.jabur@uobasrah.edu.iq		edu.iq
Module Leader's Acad. Title Professor		Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if availa	Name (if available)		E-mail		
Peer Reviewer Na	iewer Name Name		e-mail	E-mail		
Scientific Committee Date	nmittee Approval 1/06/2023		Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

	Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	The aim of this course is to give students an expanded idea of the problem of metal corrosion, its types, causes, measurement, and how to avoid and protect against it through coatings and others.			
Module Learning Outcomes	1- An ability to apply knowledge of science, and engineering2- An ability to design and conduct experiments, as well as to analyze and			

	interpret data.
مخرجات التعلم للمادة الدراسية	3- An ability to identify, formulate, and solve engineering problems.
الدراسية	4- An ability to use the techniques, skills, and modern engineering tools
	necessary for engineering practice.
	5- The ability to design and select engineering materials for scientific and
	industrial applications.
	6- The ability to think about solving problems related to the use of
	engineering materials and methods of avoiding them.
	7- Writing scientific reports, reading blueprints and analyzing engineering
	materials.
	8- The ability to keep pace with developments in engineering materials and
	1- Introduction which includes the definition, cost, environments, classification
	and measurement of corrosion rate. [7 hrs]
	2- The electrochemical corrosion which classified into general and localized
	corrosion. [7 hrs]
	3- Galvanic corrosion. [7 hrs]
	4- Crevice corrosion. [7 hrs]
	5- Pitting corrosion. [7 hrs]
Indicative Contents	6- Intergranular corrosion. [7 hrs]
المحتوبات الإرشادية	7- Stress corrosion. [7 hrs]
	8- Erosion corrosion. [7 hrs]
	9- Cavitation damage. [7 hrs]
	10- Selective Leaching. [7 hrs]
	11- Fretting corrosion. [7 hrs]
	12- Corrosion Fatigue. [7 hrs]
	13- Hydrogen Damage. [7 hrs]
	l .

Learning and Teaching Strategies			
استراتيجيات التعلم والتعليم			
Strategies 1- Explanation and clarification through lectures.			

2- Display scientific materials with projectors: data show, smart boards,	, plasma
screens	

- 3- Self-learning through homework and mini-projects within the lectures.
- 4- Laboratories.
- 5- Graduation projects.

Student Workload (SWL)					
الحمل الدراسي للطالب					
Structured SWL (h/sem)	0.2	Structured SWL (h/w)	4		
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	58	Unstructured SWL (h/w)	2		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	36	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem)	150				
الحمل الدراسي الكلي للطالب خلال الفصل	130				

	تقييم المادة الدراسية					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	

Module Evaluation

Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction which includes the definition, cost, environments, classification and measurement of corrosion rate			
Week 2	General and localized corrosion			
Week 3	The electrochemical corrosion Types			
Week 4	Galvanic corrosion			
Week 5	Crevice corrosion			
Week 6	Intergranular corrosion			
Week 7	Stress corrosion			
Week 8	Erosion corrosion			
Week 9	Cavitation damage			
Week 10	Selective Leaching			
Week 11	Fretting corrosion			
Week 12	Corrosion Fatigue			
Week 13	Hydrogen Damage			
Week 14	Protection methods			
Week 15	Case studies			
Week 16	Preparatory week before the final Exam			

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Lab 1: Introduction to corrosion experiments		
Week 2	Lab 2: Galvanic couples		
Week 3	Lab 3: Pitting corrosion		
Week 4	Lab 4: Crevice corrosion		
Week 5	Lab 5: Sensitization of stainless steel		
Week 6	Lab 6: Electroplating of steel		
Week 7			

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the Library?			
Required Texts	Engineering Corrosion, M.G. Fontana, McGraw-Hill Education	Yes			
Recommended Texts					
Websites					

Grading Scheme					
مخطط الدرجات					
Group	Group Grade التقدير Marks (%) Definition				
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance	

(50 - 100)	B - Very Good	جید جدا	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية				
Module Title	Heat Transfer	Module Delivery		
Module Type	Basic learning activities (B)	☑ Theory		

Module Code	MAE354				Lecture Lab	
ECTS Credits	6				☐ Tutorial	
SWL (hr/sem)	150				☐ Practical ☐ Seminar	
Module Level		29	Semester of Delivery 5		5	
Administering Department Mate		Material	College	Engine	Engineering	
Module Leader	Qais A. Rishack		e-mail	qais.rashck@uobasrah.edu.iq		edu.iq
Module Leader's Acad. Title		Assit. Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents				
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدراسية	The objective of studying heat transfer by conduction is to identify the most important methods of heat transfer. Also, learn about the diffusion equation in heat transfer and derive its mathematical model. This course aims to learn how to calculate the rate of heat transfer by conduction through solid bodies for different shapes and coordinates. Also, in this course the student will study the transfer of heat by convection to identify this type of heat transfer methods and its most important types and the mathematical			

	equations for each type and how to calculate the heat transfer rate for the internal and external flow. The course also aims to calculate the rate of heat transfer by forced convection and in the different types of heat exchanger and the most mathematical equations used in these types.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	A- Knowledge and Understanding A1. An ability to apply knowledge of mathematics, science, and engineering A2. An ability to design and conduct experiments, as well as to analyze and interpret data. A3. An ability to identify, formulate, and solve engineering problems. A4. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. B. Subject-specific skills B1. The ability to design and select engineering materials for scientific and industrial applications. B2. The ability to think about solving problems related to the use of engineering materials and methods of avoiding them. B3. Writing scientific reports, reading blueprints and analyzing engineering materials. B4. The ability to keep pace with developments in engineering materials and their properties.
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part A – Conduction Heat Transfer -Heat Transfer Method [7 hrs]. -Conduction heat transfer, Initial and boundary conditions, Heat diffusion equation in different coordinates. [15 hrs]

-Temperature distribution through plane and composite walls, Insulation systems, Thermal and contact resistance, Temperature distribution in radial systems, Temperature distribution in sphere systems, Extended surface (Fins), study the performance of fins, Determination of heat transfer. [20 hrs]

Part B - Convection Heat Transfer

- -Convection boundary layers, velocity boundary layer, thermal boundary layer, laminar and Turbulent flow, convection transfer equation, Reynolds, Prandtl and Grashof Numbers. [12 hrs]
- -External flow, empirical correlations , Flat plate in parallel flow, mixed boundary layer. [8 hrs]
- -Internal flow, Fully developed region, Laminar flow in circular tubes, Turbulent flow in circular tube, Noncircular tubes. [12 hrs]
- Overall heat exchanger coefficient , Heat exchanger analysis, Log Mean Temperature difference Method , The Effectiveness-NTU Method . [16 hrs]

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
Strategies	 Explanation and clarification through lectures. Display scientific materials with projectors: data show, smart boards, plasma screens. Self-learning through homework and mini-projects within the lectures. Laboratories. Graduation projects. Scientific visits. Seminars held in the department. 			

8- Summer training.
Assessment methods
1- Short exams (Quiz).
2- Homework.
3- Semester and final exams for theoretical and practical subjects.
4- Small projects within the lesson.
5- Interaction within the lecture.
6- Reports.

Student Workload (SWL)				
الحمل الدراسي للطالب				
Structured SWL (h/sem)		Structured SWL (h/w)	_	
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem)	50	Unstructured SWL (h/w)	2	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem)	150			
الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation				
تقييم المادة الدراسية				
Time/Nu Weight (Marks) Week Due Relevant Learning				

		mber			Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Heat transfer methods, Conduction heat transfer.			
Week 2	Initial and boundary conditions, Heat diffusion equation in different coordinates.			
Week 3	Temperature distribution through plane and composite walls.			
Week 4	Insulation systems, Thermal and contact resistance.			
Week 5	Temperature distribution in radial systems , Temperature distribution in sphere systems .			
Week 6	Extended surface (Fins), Study the performance of fins.			
Week 7	Determination of heat transfer rate.			
Week 8	Convection boundary layers, Velocity boundary layer, Thermal boundary layer.			
Week 9	Laminar and turbulent flow, Convection transfer equation, Reynolds, Prandtl and Grashof Numbers.			
Week 10	External flow, empirical correlations, Flat plate in parallel flow, mixed boundary layer.			

Week 11	Fully developed region, laminar flow in circular tubes.
Week 12	Turbulent flow in circular tubes and noncircular tubes.
Week 13	Overall heat exchanger coefficient and heat exchanger analysis.
Week 14	Overall heat exchanger coefficient and heat exchanger analysis and Log mean temperature difference method.
Week 15	The Effectiveness-NTU method.

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Calibration of Thermocouples.				
Week 2	Thermal conductivity measurement.				
Week 3	Study the performance of fins.				
Week 4	Cross-flow heat Exchanger.				
Week 5	Forced convection heat transfer.				
Week 6	Free convection heat transfer.				
Week 7					

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts	Fundamentals of Heat and Mass Transfer, by Frank P. Incropera and David P. DeWitt, 2002.	Yes
Recommended Texts	Heat Transfer A Practical Approach, by Yunus A. Cengel, second edition, 2002.	No
Websites	Libraries sites in some scientific universities.	

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance
	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
,	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Numerical Analysis		Modu	ule Delivery		
Module Type	Basic learning activities			☑ Theory		
Module Code	E361					
ECTS Credits		6 ⊠ Tutorial				
SWL (hr/sem)		☐ Practical ☐ Seminar				
Module Level	Module Level 6		Semester of Delivery		30	
Administering Dep	istering Department MAE		College	ENGINEERING		
Module Leader	Imad Obaid Al	-Fahad	e-mail emad.bajee@uobasrah.edu.iq		<u>edu.iq</u>	
Module Leader's	Leader's Acad. Title Lecturer Mod		Module Lea	ader's Qualification Ph.D.		Ph.D.
Module Tutor	Name (if available) e-mail E		E-mail			
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents		
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية		
Module Aims أهداف المادة الدراسية	 Preparing and qualifying engineers to meet the requirements of the labor market in the private and public sectors in materials engineering. Providing distinguished academic programs in the field of materials engineering, both theoretical and practical, that comply with international standards of academic quality and meet the needs of the labor market. Developing and improving scientific research in the fields of materials engineering, writing programs for solving differential equations and complex functions, data processing, digital signal analysis and control. Preparing a stimulating environment for faculty members to develop their knowledge and educational and research skills. 	
	5. Building and developing partnerships with the governmental and private sectors and the community with all its various institutions.	
	A. Knowledge and Understanding	
	A1- Clarify the basic concepts of Numerical Analysis and their applications in social and industrial fields.	
Module Learning	A2- Acquiring the skill in dealing with and addressing problems through the acquired sciences in this field.	
Outcomes	A3- Acquisition of basic skills to solve engineering problems.	
وخرجات التعلم للمادة	A4- Gaining experience in describing engineering problems numerically and finding related equations to solve them.	
مخرجات التعلم للمادة الدراسية	B. Subject-specific skills	
	B1 - The ability to solve mathematical equations numerically.	
	B 2 - The ability to think about addressing problems according to the algorithms and methods of their work.	
	B 3 - Writing scientific reports, reading charts, and analyzing digital data.	
	Roots of equations (10 hrs.)	
Indicative Contents	introduction, bisection, Newton's Raphson, modified Newton's method, The secant Method, root solving as inverse interpolation	
المحتويات الإرشادية	Interpolation and extrapolation (20 hrs.)	
	Gregory Newton interpolation, central differences, non-equally spaced data,	

Lagrange Polynomials, cubic spline functions, extrapolation.

Finite Difference calculus (20 hrs.)

Forward and backward Differences, higher order expressions, central differences, differences and polynomials.

Solution of algebraic equations (20 hrs.)

Gauss and Gauss-Jordan Elimination, Gauss siedel iteration

Curve fitting (30 hrs.)

Least squares curve fitting of discrete points, the approximation of continuous function.

Numerical Integral (10 hrs.)

Trapezoidal rule, Simpson's rule, Gauss Quadrature, dealing with singularities.

Solution of ordinary differential equations (20 hrs.)

General initial value problem, euler method, truncation error, convergence and stability, runge-kutta type formulas, predictor-corrector methods, the solution of sets of simultaneous first order differential equations.

Solution of partial differential equations (20 hrs.)

Solution of Laplace equations, Poisson's equations, 1-Dim Wave equations and 1-Dim Diffusion equation

Learning and Teaching Strategies		
استراتيجيات التعلم والتعليم		
	Teaching and Learning Methods	
Strategies	1. Explanation and clarification through lectures.	
	2. Using data show, smart boards, and plasma screens.	
	3. Self-learning through homework and mini-projects within the lectures.	
	4. Laboratories.	
	5. Graduation projects.	
	6. Scientific visits.	
	7. Seminars held in the department.	

8. Mid-term and summer training.
Assessment methods
1. Short exams (quizzes).
2. Homework.
3. Semester and final exams for theoretical and practical subjects.
4. Small projects within the lesson.
5. Interaction within the lecture.
6. Reports

Student Workload (SWL)					
الحمل الدراسي للطالب					
Structured SWL (h/sem)		Structured SWL (h/w)	_		
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)		Unstructured SWL (h/w)	2		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation					
تقييم المادة الدراسية					
	Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	

	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Fixed-point, Newton-Raphson			
Week 2	Iteration method			
Week 3	Gauss Elimination method			
Week 4	Gauss-Jordan method			
Week 5	Forward, Backward and Central differences			
Week 6	Newton Interpolation			
Week 7	Lagrange Interpolation			
Week 8	Polynomial fitting			
Week 9	Exponential and Power Fitting			
Week 10	Trapezoidal and Simpson methods			

Week 11	Euler method, Runge Kutta method
Week 12	Runge Kutta Second Order method
Week 13	Solution of Laplace Equation
Week 14	Solution of the Wave Equation
Week 15	Solution of Diffuse Equation

	Delivery Plan (Weekly Lab. Syllabus)					
	المنهاج الاسبوعي للمختبر					
	Material Covered					
Week 1						
Week 2						
Week 3						
Week 4						
Week 5						
Week 6						
Week 7						

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	An Introduction to Numerical Analysis. Endre Suli.	Yes			

	2. Advanced Engineering Mathematics, Kreyszig, Jon Wylie and Sons.	
	3. Mathematical Methods for Engineers and Scientists, K. T. Tang	
	4. Numerical Methods, Robert W. Hornbeck, Quantum Publishers Inc.	
Recommended Texts		
Websites		

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information معلومات المادة الدراسية					
Module Title	Behavior of Engineering Materials (II)			Module Delivery	
Module Type	Core	Core learning activity			
Module Code		MAE361			
ECTS Credits		6			
SWL (hr/sem)		150		☐ Seminar	
Module Level		6 Semester of			31
Administering Department Material College			College	Engineering	
Module Leader	Hayder Qassem e-mail			ha@uobasrah.edu.iq	

Module Leader's Acad. Title		Senior lecturer	Module Leader's Qu		alification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module None Semester				
Co-requisites module None Semester				

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	The module provides an introduction to the science and engineering of the behaviour of engineering materials, by define the nature of engineering materials and understanding the internal structural systems of them in terms of atomic bonding and crystalline shapes. Therefore, the ability to understand the relationship between the microstructures and the external properties of industrial materials and their engineering behaviour as a function of loads and properties. Moreover, their industrial features. The course provides good knowledge about the behaviour of engineering materials according to their mechanical, electrical, magnetic and optical properties. Additionally, the relationship of this behaviour to different applications, service conditions and life span of these engineering materials.			
Module Learning Outcomes مخرجات التعلم للمادة	A- Knowledge and Understanding A1. An ability to apply knowledge of mathematics, science, and engineering A2. An ability to design and conduct experiments, as well as to analyze and interpret data. A3. An ability to identify, formulate, and solve engineering problems.			
الدراسية	A4. An ability to use the techniques, skills, and modern engineering tools			

necessary for engineering practice.

- B. Subject-specific skills
- B1. The ability to design and select engineering materials for scientific and industrial applications.
- B2. The ability to think about solving problems related to the use of engineering materials and methods of avoiding them.
- B3. Writing scientific reports, reading blueprints and analyzing engineering materials.
- B4. The ability to keep pace with developments in engineering materials and their properties.

Fracture Mechanics in Polymers, Chain scission, Disentanglement, Shear Yielding, Crazing, Fracture of Ceramic, Ceramic fracture characterization, Thermal shock failure of ceramics, Contact failure, Factors Affecting the Fracture of a Material, Stress Concentration, Speed of loading, Temperature, Thermal shock

Failure in composite materials, Failure in polymer matrix composites, unidirectional composites, cross-ply laminates, fibre buckling and the formation of kink bands, Failure in metal matrix composites, discontinuous reinforcement, continuous fibre reinforcement, Failure in ceramic matrix composites, particulate reinforcement, continuous fibre reinforcement

Indicative Contents

المحتويات الإرشادية

Fatigue Crack propagation by blunting and sharpening process, Microscopic Characteristics of Fatigue Fracture, Striations, Striation Formation Mechanism, Striation characterization, striations visibility, Macroscopic Characteristics of Fatigue Fracture, Beach marks, forming the Beach marks, Beach marks characterization, Ratchet marks, Ratchet marks characterization , Fatigue Crack Growth Life, Crack Length rate Measurement

Wear failure, Abrasive wear, Two body abrasion, Three body abrasion, Microscopic mechanisms of abrasive wear, Prevention of Abrasive wear, Erosive wear characterization, Grinding wear, Prevention of Grinding wear, Gouging wear, Adhesive wear , micromechanism of adhesive wear, Fretting wear, recognize the Fretting wear, Prevention of fretting wear

Contact stress fatigue, Subsurface-origin fatigue, The subsurface-origin pitting fatigue mechanism, Surface-origin fatigue, Characterization of the Surface-Origin Fatigue damage, Surface-Origin Fatigue cracks enlarge

Subcase-origin fatigue, Characterization of the Subcase-origin fatigue damage, Prevention Subcase-origin fatigue, Cavitation fatigue, Principles of Cavitation Fatigue, cavitation pitting fatigue progress, Relationship between Corrosion and cavitation pitting fatigue, Prevention of cavitation fatigue

Mechanical Destructive Testing, Tensile Testing, Compression Test, Mechanical testing: tensile, hardness, impact, fatigue tests

Case Studies and Failure Analysis Reports, Analysis of real-world case studies of material failures, Root cause identification and analysis, Preparation of failure analysis reports

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

	1 Main method is chalk and talk (naked lecture).				
	2 Explanation and clarification through lectures				
	3- Self-learning through homework, mini-projects and problems within.				
	4- Laboratories.				
	5- Scientific visits.				
	6- Seminars held in the department.				
Strategies	7- Summer training.				
	Assessment methods				
	1- Short exams (Quiz).				
	2- Homework.				
	3- Semester and final exams for theoretical and practical subjects.				
	4- Small projects within the lesson.				
	5- Interaction within the lecture.				
	6- Reports.				

Student Workload (SWL) الحمل الدراسي للطالب					
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation					
	تقييم المادة الدراسية				
Time/Nu Weight (Marks) Week Due Relevant Learning					

		mber			Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Engineering materials definition, description and classification				
Week 2	Entity of the engineering materials, atomic bonding				
Week 3	Atomic bonding types of different engineering materials				
Week 4	Crystal structure of the engineering materials, metallic, polymeric and ceramics				
Week 5	Mechanical behaviour of materials				
Week 6	Mechanical properties 1, elasticity				
Week 7	Mechanical properties 2, plasticity				
Week 8	Stress, strain and Poisson's ratio				
Week 9	Elastic moduli				
Week 10	Fatigue and failure				
Week 11	Magnetic behaviour of materials and their properties				
Week 12	Magnetic field, hysteresis, domain and applications				
Week 13	Electrical behaviour of materials and their properties, conductors and insulators				
Week 14	Thermal behaviour of materials, heat conductors and insulators				
Week 15	Optical behaviour and properties of the engineering materials and their application				

Delivery Plan (Weekly Lab. Syllabus)

	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Cantilever Beam Strain Gage Experiment				
Week 2	Column Buckling Experiment				
Week 3	Fracture of material Experiment				
Week 4	Thermal expansion experiment				
Week 5	Electrical behaviour as a function of mechanical stress				
Week 6	Optical behaviour inspection				
Week 7	Cantilever Beam Strain Gage Experiment				

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the			
	Library?				
Required Texts	Materials handbook, by François Cardarelli	No			
Recommended Texts	Materials for Engineers William F. Hosford	No			
Websites	Relevant scientific and industrial websites, journals and I	ibraries.			

Grading Scheme مخطط الدرجات					
Group Grade التقدير Marks (%) Definition					
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information معلومات المادة الدراسية						
Module Title	C	Ceramic Materials				
Module Type		Core		☑ Theory		
Module Code		MAE362		☑ Lecture☑ Lab		
ECTS Credits		5		☐ Tutorial ☐ Practical		
SWL (hr/sem)	150			☐ Seminar		
Module Level		32	Semester o	f Delivery	6	
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Zahraa Adnan Hamza & Mohammed Yaqoob Yousif		e-mail	lec.mohammed.yousif@	Quobasrah.edu.iq	
Module Leader's Acad. Title Assist. Lecturer		Module Lea	ader's Qualification M.Sc.			
Module Tutor	Name (if availa	able)	e-mail	E-mail		

Peer Reviewer Name	Name	e-mail	ail E-mail	
Scientific Committee Approval Date	01/06/2023	Version Nu	mber	1.0

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims	The objective of this course is to give the students the ability of understanding the				
أهداف المادة الدراسية	structure and properties of ceramic materials that qualify them designing and				
	Selection of these materials in different technological products.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 The principle knowledge of ceramic materials Understanding the accurate details of structure and properties. The ability to deal with ceramic materials. The ability to prepare of ceramic mixtures, forming and sintering. Define and explain Atomic-, micro-structure, properties of typical ceramics. List, discuss, apply and assess properties of ceramics materials List, discuss, apply and assess process of ceramics materials Analyze microstructure-property-structure relationship of ceramic. 				
Indicative Contents المحتويات الإرشادية					

Learning and Teaching Strategies					
استراتيجيات التعلم والتعليم					
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.				

Student Workload (SWL)					
الحمل الدراسي للطالب					
Structured SWL (h/sem)		Structured SWL (h/w)			
الحمل الدراسي المنتظم للطالب خلال الفصل	92	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	F0	Unstructured SWL (h/w)			
الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem)	125				
الحمل الدراسي الكلي للطالب خلال الفصل					

			odule Evaluation تقييم المادة الدراسيا		
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7

	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)					
المنهاج الاسبوعي النظري					
	Material Covered				
Week 1	Introduction to Ceramics				
Week 2	Elementary Crystallography				
Week 3	Ceramic Crystal Structure				
Week 4	Traditional Ceramics and Advanced Ceramics				
Week 5	Manufacturing Process of ceramics				
Week 6	Manufacturing Process of ceramics				
Week 7	Thermodynamics of Sintering				
Week 8	Solid State of Sintering				
Week 9	Liquid State of Sintering				
Week 10	Sintering Mechanisms				
Week 11	Refractories				
Week 12	Structural Ceramics				
Week 13	Bioceramics				
Week 14	Alumina Ceramics				
Week 15	Zirconia, Ceramic Steel				

|--|

Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر			
	Material Covered		
Week 1	Lab 1: Sieving Analysis		
Week 2	Lab 2: Ceramic Compaction and Sintering		
Week 3	Lab 3: Thermal Conductivity		
Week 4	Lab 4: Electrical Resistivity		
Week 5	Lab 5: Compression Strength		
Week 6	Lab 6: Water absorption		
Week 7	Lab 7: Ceramography		

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Ceramic Materials, Science and Engineering C. B. Carter and M. G. Norton	Yes		
Recommended Texts				
Websites				

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information				
معلومات المادة الدراسية				
Module Title	Corrosion II	Module Delivery		
Module Type	Core	☑ Theory		
Module Code	MAE363			

ECTS Credits	6				⊠ Lab	
SWL (hr/sem)				☐ Tutorial ☐ Practical ☐ Seminar		
Module Level	Module Level		Semester of Delivery		6	
Administering Department		Materials	College	Engineering		
Module Leader	Adnan S. Jabur		e-mail	adnan.jabur@uobasrah.edu.iq		edu.iq
Module Leader's	Acad. Title	Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if availa	Name (if available)		E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		1/06/2023	Version Number 1.0			

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	This course aims to teach the student how to employ the electrochemical theory in characterizing wet corrosion cases as well as in measuring the speed and rate of corrosion in a faster and more accurate way than traditional methods.			
Module Learning	1- An ability to apply knowledge of science, and engineering			
Outcomes	2- An ability to design and conduct experiments, as well as to analyze and interpret data.3- An ability to identify, formulate, and solve engineering problems.			
مخرجات التعلم للمادة الدراسية	4- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.			

	5- The ability to design and select engineering materials for scientific and industrial applications.
	6- The ability to think about solving problems related to the use of
	engineering materials and methods of avoiding them.
	7- Writing scientific reports, reading blueprints and analyzing engineering materials.
	8- The ability to keep pace with developments in engineering materials and
	Introduction to the modern theory of corrosion [7 hrs]
	2. The electrochemical corrosion which classified into general and localized
	corrosion. [7 hrs]
	3. Equilibrium and polarization. [7 hrs]
	4. Activation polarization. [7 hrs]
	5. Concentration polarization. [7 hrs]
Indicative Contents	6. Mixed potential Theory. [7 hrs]
	7. Passivity. [7 hrs]
المحتويات الإرشادية	8. Mixed potential theory applications (effect of oxidizers). [7 hrs]
	9. Effect of velocity. [7 hrs]
	10. Measurement of corrosion rate. [7 hrs]
	11. Galvanic effect. [7 hrs]
	12. Anodic and Cathodic protection. [7 hrs]
	13. Case studies. [7 hrs]

Learning and Teaching Strategies استر اتیجیات التعلم و التعلیم				
Strategies	 Explanation and clarification through lectures. Display scientific materials with projectors: data show, smart boards, plasma screens. Self-learning through homework and mini-projects within the lectures. Laboratories. Graduation projects. 			

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل 4				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل				

Module Evaluation تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessme	Total assessment 100% (100 Marks)					

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction to the modern theory of corrosion				
Week 2	The electrochemical corrosion which classified into general and localized corrosion				
Week 3	The electrochemical corrosion Types				
Week 4	Equilibrium and polarization				
Week 5	Activation polarization				
Week 6	Concentration polarization				
Week 7	Mixed potential Theory				
Week 8	Passivity				
Week 9	Mixed potential theory applications (effect of oxidizers)				

Week 10	Effect of velocity
Week 11	Measurement of corrosion rate
Week 12	Galvanic effect
Week 13	Anodic and Cathodic protection
Week 14	Protection methods
Week 15	Case studies
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1	Lab 1: Introduction to corrosion experiments			
Week 2	Lab 2: Half Cells			
Week 3	Lab 3: Standard Electrodes			
Week 4	Lab 4: Potentiostatic polarization			
Week 5	Lab 5: Tafel method			
Week 6	Lab 6: Linear polarization			
Week 7				

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Library?					
Required Texts	Engineering Corrosion, M.G. Fontana, McGraw-Hill Education	Yes			
Recommended Texts					
Websites					

Grading Scheme						
	مخطط الدرجات					
Group	Group Grade التقدير Marks (%) Definition					
Success Group	A - Excellent	امتياز	90 - 100	Outstanding Performance		

(50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C - Good	ختر	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية					
Module Title	Pol	Polymers Engineering		Module Delivery	
Module Type	Basic learn	ing activities (B)		☑ Theory	
Module Code		MAE364		⊠ Lecture ⊠ Lab	
ECTS Credits	6			☐ Tutorial ☐ Practical ☐ Seminar	
SWL (hr/sem)		150			
Module Level		34	Semester o	f Delivery	6
Administering Department		Materials Engineering	College	Engineering	
Module Leader	dule Leader Safaa A. S. Almtori		e-mail	Safaa.saleh@uobasrah.	edu.iq
Module Leader's Acad. Title		Assit. Professor	Module Lea	der's Qualification Ph.D.	
Module Tutor Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		Name	e-mail	E-mail	

Scientific Committee Approval Date	01/06/2023	Version Number	3.0
------------------------------------	------------	----------------	-----

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدر اسية	The objective of studying polymers engineering is to identify the most important knowledge of polymers. Also, learn about the different types of polymers (thermoplastic and thermosetting) as well as natural and synthetic polymers, homopolymers, copolymers and polymer alloys. This course aims to learn and gave the knowledge about how the polymers produces by different polymerization process according to the type of polymers by changing functionality numbers in functional solid bodies for different polymers and polymerization process. Also, in this course the student will study the types of repeating units of molecules by different shapes and molecular weight of chains arrangement like linear or branching or crosslinking chains according to types of repeating units of polymers to identify the type of polymers which are used in application to most important types and to improvement the mechanical properties for each type of polymers, and how to calculate the crystallization ratio for the different polymers as a function of density of specimen and crystal, amorphous zones in polymers. The course also aims to study the effect of heat transfer by cooling the melt of polymers on the consisting the crystal zone and growth it for the different types of zone during solidification, and study the glass transition temperature role during the process, in addition to measuring mechanical and physical properties.			
Module Learning				

Outcomes A- Knowledge and Understanding A1. An ability to apply knowledge of polymers, types, and engineering applications مخرجات التعلم للمادة الدر اسية A2. An ability to preparation and conduct experiments, as well as to chose appropriate polymers. A3. An ability to identify, and solve polymers engineering problems. A4. An ability to use the techniques, skills, and engineering tools necessary for engineering applications. B. Subject-specific skills B1. The ability to design and select engineering polymers for scientific and industrial applications. B2. The ability to think about solving problems related to the use of engineering polymers material and methods of avoiding them. B3. Writing scientific reports, reading blueprints and analyzing polymers engineering materials. B4. The ability to keep pace with developments in engineering polymers material and their properties. Indicative content includes the following. Part A – principles of polymers engineering - Polyethylene types, properties and application [8 hrs]. -types of polymers, uses of polymers, structures, types of chains, molecular weight, applications, polymerization process, types of repeating unites, homopolymers ,copolymers ,cross-linked polymer, polymer alloys, molecular symmetry and distribution, structure of crystal polymers, helices of polymers, **Indicative Contents** theory of crystal polymers, crystallinity and specific volume of polymers, المحتويات الإرشادية crystallization and melting of polymers, conditions of crystallization, melting temperature and relative molecular weight of polymers.[12 hrs] -melting temperature and the temperature of the maximum crystallization rate, glass transition temperature, specific volume and glass transition temperature, molecular structure of amorphous polymers, the number of random molecular structure, the freely jointed chain of polymers, the elastic properties of natural rubber, stress-strain relationship, the work done of deformation polymers.[10] hrs]

Part B— Engineering rubber

Properties of rubbers, vulcanization rubber, reinforcing rubbers, history of synthetic and types of rubber production, introduction of viscoelasticity, the nature of viscoelasticity, linear and nonlinear viscoelasticity, A thin-walled tube method. [12 hrs]

-creep compliance, stress relaxation, dynamic properties, torsion pendulum to determination shear modulus and damping forces, theory of linear viscoelasticity, voigt and maxwell models, weakness of mechanical models, reinforced polymers, types of reinforcing fillers, the effect of reinforcing fillers on cost and processing. [18 hrs]

Learning and Teaching Strategies استر اتیجیات التعلم و التعلیم					
Strategies	1- Explanation and clarification through lectures. 2- Display scientific materials with projectors: data show, smart boards, plasma screens. 3- Self-learning through homework and mini-projects within the lectures. 4- Laboratories. 5- Graduation projects. 6- Scientific visits. 7- Seminars held in the department. 8- Summer training. Assessment methods 1- Short exams (Quiz). 2- Homework. 3- Semester and final exams for theoretical and practical subjects. 4- Small projects within the lesson. 5- Interaction within the lecture. 6- Reports.				

Student Workload (SWL) الحمل الدراسي للطالب			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150		

	Module Evaluation تقييم المادة الدراسية					
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	5% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	5% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	1.5 hr	20% (10)	7	LO # 1-7	
assessment	Final Exam	2 hrs	50% (50)	16	All	
Total assessment			100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Polyethylene types, properties and application .		
Week 2	types of polymers, uses of polymers, structures, types of chains, molecular weight, applications, polymerization process		
Week 3	, types of repeating unites , homopolymers ,copolymers ,cross-linked polymer, polymer alloys		
Week 4	molecular symmetry and distribution, structure of crystal polymers, helices of polymers,		

	theory of crystal polymers, crystallinity and specific volume of polymers
Week 5	molecular structure of amorphous polymers , the number of random molecular structure , the freely jointed chain of polymers
Week 6	the elastic properties of natural rubber, stress-strain relationship, the work done of deformation polymers
Week 7	theory of crystal polymers, crystallinity and specific volume of polymers
Week 8	crystallization and melting of polymers, conditions of crystallization, melting temperature and relative molecular weight of polymers.[
Week 9	melting temperature and the temperature of the maximum crystallization rate, glass transition temperature, specific volume and glass transition temperature
Week 10	molecular structure of amorphous polymers , the number of random molecular structure
Week 11	the freely jointed chain of polymers , the elastic properties of natural rubber , stress-strain relationship, the work done of deformation polymers
Week 12	Properties of rubbers, vulcanization rubber, reinforcing rubbers, history of synthetic and types of rubber production, introduction of viscoelasticity
Week 13	the nature of viscoelasticity, linear and nonlinear viscoelasticity, A thin-walled tube method.
Week 14	creep compliance, stress relaxation, dynamic properties, torsion pendulum to determination shear modulus and damping forces, theory of linear viscoelasticity,
Week 15	voigt and maxwell models , weakness of mechanical models, reinforced polymers , types of reinforcing fillers , the effect of reinforcing fillers on cost and processing .

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Shore hardness test.		
Week 2	Thermal conductivity measurement.		
Week 3	Creep test		
Week 4	Tension test		

Week 5	Impact test.
Week 6	
Week 7	

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Principle of polymer engineering by N.G.Mccrum	Yes		
Recommended Texts	Plastic engineering by Crawford	No		
Websites	Libraries sites in some scientific universities.			

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Graves	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	ر اسب	(0-44)	Considerable amount of work required		

Note:Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information معلومات المادة الدراسية						
Module Title	MEC	HANICAL DESI	IGN	Modu	ıle Delivery	
Module Type	Basic learning ac	tivities			☑ Theory	
Module Code		MAE471	☑ Lecture☑ Lab			
ECTS Credits		7				
SWL (hr/sem)		175		☐ Practical☐ Seminar		
Module Level		35	Semester o	of Delivery 7S		7 S
Administering Dep	partment	MAE	College	ge ENGINEERING		
Module Leader	AZZAM DAWC	OOD HASSAN	e-mail	AZZAM.HASSAN@UOBASRAH.EDU.		SRAH.EDU.IQ
Module Leader's	Acad. Title	ASST. Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	or Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	e-mail E-mail		
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	1.0	

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
IVIOUL					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	The objective of this course is to introduce students to fundamental area of mechanical design processes which enables students to focus on the study of design effecting factors, physical and mechanical properties of materials. These principals allow the students to assess what could be achieved through this course when they are identifying of design to solve problems in industries.				
	A- Knowledge and Understanding				
	A1. An ability to apply knowledge of mathematics, science, and engineering.				
	A2. An ability to design and conduct experiments, as well as to analyze and interpret data.				
	A3. An ability to identify, formulate, and solve engineering problems.				
Module Learning Outcomes	A4. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.				
	B. Subject-specific skills				
مخرجات التعلم للمادة الدراسية	B1. The ability to design and select engineering materials for scientific and industrial applications.				
	B2. The ability to think about solving problems related to the use of				
	engineering materials and methods of avoiding them.				
	B3. Writing scientific reports, reading blueprints and analyzing engineering materials.				
	B4. The ability to keep pace with developments in engineering materials and their properties.				
Indicative Contents	The course cover: Stress analysis				

المحتويات الإرشادية Strain analysis, Bending, Torsion, pressure vessels Design for static strength Theories for ductile materials max. Stress theory, max. Shear stress theory, distortion energy theory, theories for brittle materials, Coulomb –Mohr theory, modified Coulomb - Mohr theory. Design for fatigue strength Stress life definitions, the endurance limit, the fatigue strength, endurance limit modifying factors, fluctuating stresses, stress concentration factor, fatigue strength under fluctuating stresses, design for infinite life Design of springs Stresses in helical springs, the curvature effect, deflection of helical springs, extension springs, compression springs, spring materials, design of helical spring, critical frequency, fatigue loading, helical torsion springs, leaf spring **Learning and Teaching Strategies** استراتيجيات التعلم والتعليم 1- Explanation and clarification through lectures. 2- Display scientific materials with projectors: data show, smart boards, plasma screens. 3- Self-learning through homework and mini-projects within the lectures. 4- Laboratories. 5- Graduation projects. 6- Scientific visits. 7- Seminars held in the department. 8- Summer training. **Strategies** Assessment methods 1- Short exams (Quiz). 2- Homework. 3- Semester and final exams for theoretical and practical subjects. 4- Small projects within the lesson. 5- Interaction within the lecture. 6- Reports.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	68	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل				

	Module Evaluation						
	تقييم المادة الدراسية Time/Nu						
		mber	Weight (Marks)	Week Due	Outcome		
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

	Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري					
	Material Covered					
Week 1	Introduction to Mechanical Engineering Design(Mechanical Engineering Design, Standards and Codes, Design Factor and Factor of Safety)					
Week 2	Load and Stress Analysis (Mohr's Circle for Plane Stress, Stress Concentration					
Week 3	Stresses in Pressurized Cylinders, Curved Beams in Bending)					

Week 4	Failures Resulting from Static Loading(Static Strength, Stress Concentration, Failure Theories, Maximum-Shear-Stress Theory for Ductile Materials, Distortion-Energy
Week 5	Theory for Ductile Materials, Coulomb-Mohr Theory for Ductile Materials, Maximum-Normal-Stress
Week 6	Theory for Brittle Materials, Modifications of the Mohr Theory for Brittle Materials, Selection of Failure Criteria)
Week 7	Fatigue Failure Resulting from Variable Loading (Approach to Fatigue Failure in Analysis and Design, Fatigue-Life Methods, The Stress-Life Method, The Strain-Life Method,
Week 8	The Endurance Limit, Endurance Limit Modifying Factors, Stress Concentration and Notch Sensitivity, Fatigue Failure Criteria for Fluctuating Stress
Week 9	Combinations of Loading Modes
Week 10	Design of Mechanical Elements(Shafts and Shaft Components,
Week 11	Screws, Fasteners, and the Design of Nonpermanent Joints,
Week 12	Welding, Bonding, and the Design of Permanent Joints
Week 13	Mechanical Springs
Week 14	Gears—General
Week 15	

	Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Matlab - design of members - static design		
Week 2	MatLab - design of members - static design		
Week 3	MatLab - design of cylinders - static design		
Week 4	MatLab - design of cylinders- static design		
Week 5	MatLab - design of members - fatigue design		
Week 6	MatLab - design of members - fatigue design		
Week 7			

Learning and Teaching Resources				
مصادر التعلم والتدريس				
Text Available in the				

		Library?
Required Texts	Mechanical Design , 11th edition by Shigly	Yes
Recommended Texts		
Websites		

Grading Scheme مخطط الدر جات								
Group	Grade	التقدير	Marks (%)	Definition				
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance				
	B - Very Good	جيد جدا	80 - 89	Above average with some errors				
	C - Good	جيد	70 - 79	Sound work with notable errors				
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings				
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria				
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded				
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required				

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information معلومات المادة الدراسية							
Module Title	Non-Destructive Test		ting	Modu	ıle Delivery		
Module Type	Core				☑ Theory☑ Lecture☑ Lab☐ Tutorial☐ Practical☐ Seminar		
Module Code	MAE472						
ECTS Credits	7						
SWL (hr/sem)	175						
Module Level		36	Semester o	f Delivery		7	
Administering Department		Type Dept. Code	College	Type College Code			
Module Leader	Name		e-mail	E-mail			
Module Leader's Acad. Title		Professor	Module Lea	lule Leader's Qualification		Ph.D.	
Module Tutor	Name (if availa	ne (if available) e-mail E-mail					
Peer Reviewer Name		Name	e-mail	E-mail			
Scientific Committee Approval Date		01/06/2023	Version Number 1.0				

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدراسية	 Provide students with a comprehensive understanding of the principles, concepts, and importance of NDT techniques. To familiarize students with different NDT methods such as ultrasonic testing, radiographic testing, magnetic particle testing, liquid penetrant testing, eddy current testing, and visual inspection. Students will learn about the working principles, advantages, limitations, and applications of each method. Students will gain hands-on experience with NDT equipment and instrumentation. The module aims to teach students how to operate and calibrate NDT instruments, interpret readings, and troubleshoot common issues. Practical sessions will allow students to develop technical skills and understand the importance of proper equipment handling. The module aims to introduce students to relevant standards and codes associated with NDT techniques. Students will learn about industry-specific regulations, safety guidelines, and quality assurance procedures. Understanding these standards is crucial for ensuring compliance and reliability in NDT inspections. Defect Detection and Evaluation: The module aims to develop students' abilities to detect, identify, and evaluate defects or anomalies in materials or structures using NDT techniques. Data Analysis and Reporting: Students will learn how to analyze NDT data and generate accurate reports. 			
Module Learning Outcomes قام مخرجات التعلم للمادة الدراسية	 Knowledge Acquisition: Students should demonstrate a comprehensive understanding of the principles, theories, and concepts of NDT techniques, including the different methods, equipment, and standards associated with NDT. Method Selection and Application: Students should be able to select and apply appropriate NDT methods based on the material, component, or structure being inspected. They should understand the advantages, limitations, and applications of each method and make informed decisions in selecting the most suitable technique for a given scenario. Equipment Handling and Calibration: Students should develop practical skills in operating and calibrating NDT equipment and instruments. They should be able to set up the equipment correctly, perform inspections, and troubleshoot common issues that may arise during testing. Defect Detection and Evaluation: Students should be able to detect, identify, and evaluate defects or anomalies in materials or structures using NDT techniques. They should be able to interpret test results accurately and assess the severity and implications of detected defects. 			

- 5. Data Analysis and Reporting: Students should demonstrate proficiency in analyzing NDT data, interpreting readings, and generating accurate reports. They should be able to communicate the results effectively, including documenting findings, providing recommendations, and adhering to industry-specific reporting standards.
- 6. Quality Assurance and Safety: Students should understand the importance of quality assurance and safety in NDT inspections. They should be aware of relevant standards, regulations, and guidelines and demonstrate the ability to apply them in practice to ensure reliable and safe testing procedures.
- 7. Problem-solving and Critical Thinking: Students should develop problem-solving and critical thinking skills in the context of NDT. They should be able to analyze complex scenarios, identify potential issues or challenges, and propose appropriate solutions or strategies.
- 8. Professionalism and Ethical Conduct: Students should exhibit professionalism, integrity, and ethical conduct in their NDT work. They should understand the importance of confidentiality, accuracy, and adherence to professional codes of conduct.
- 9. Industry Awareness and Emerging Technologies: Students should be familiar with industry applications of NDT techniques and be aware of emerging technologies and trends in the field. They should understand the evolving nature of NDT and be prepared to adapt to new advancements and challenges.

Indicative content includes the following.

Introduction to Non-Destructive Testing (NDT), Definition and importance of NDT, Principles and objectives of NDT and Applications of NDT in various industries [15 hrs]

NDT Methods, Ultrasonic Testing (UT), Radiographic Testing (RT), Magnetic Particle Testing (MT), Liquid Penetrant Testing (PT), Eddy Current Testing (ET), Visual Inspection (VI) and Comparison of methods and their suitability for different materials and defects [15 hrs]

Indicative Contents

المحتويات الإرشادية

NDT Equipment and Instrumentation, Overview of NDT equipment and instruments, Operation, calibration, and maintenance of NDT equipment and Introduction to transducers, probes, sensors, and imaging systems used in NDT [15 hrs]

Standards and Codes in NDT, Overview of relevant industry standards and codes, Understanding regulatory requirements and compliance and Quality assurance

Ultrasonic Testing (UT), Principles of ultrasonic wave propagation and interaction with materials, UT equipment and transducers, Interpretation of UT readings and detection of defects and Thickness measurement and flaw sizing using UT [15 hrs]

Radiographic Testing (RT), Principles of radiographic imaging and exposure techniques, Film and digital radiography, Interpretation of radiographic images and identification of defects and Radiation safety and regulations in RT. [15 hrs]

Magnetic Particle Testing (MT) and Liquid Penetrant Testing (PT), Principles of magnetic particle testing and liquid penetrant testing, Equipment and techniques for MT and PT and Detection and evaluation of surface and near-surface defects [15 hrs]

Eddy Current Testing (ET), Principles of eddy current testing, Eddy current probes and instrumentation, Applications and limitations of ET and Conductivity and thickness measurement using ET [15 hrs]

Visual Inspection (VI), Importance of visual inspection in NDT, Visual inspection techniques and equipment and Defect recognition and evaluation through visual inspection [15 hrs]

Data Analysis and Reporting, Interpretation and analysis of NDT data, Documentation and reporting of test results and Importance of clear and concise reporting in NDT [15 hrs]

Learning and Teaching Strategies استراتیجیات التعلم والتعلیم Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدر اسي للطالب					
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	68	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	175				

Module Evaluation

تقييم المادة الدراسية

	· ·					
		Time/Nu	Maight (Marks)	Week Due	Relevant Learning	
			Weight (Marks)	week Due	Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessment		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري					
	Material Covered				
Week 1	Introduction to NDT, Definition and importance of NDT, Principles and objectives of NDT and Applications of NDT in various industries				
Week 2	 Standards and Codes in NDT Overview of relevant industry standards and codes Understanding regulatory requirements and compliance Quality assurance procedures and documentation in NDT inspections 				
Week 3	Visual Inspection (VI) Importance of visual inspection in NDT Visual inspection techniques and equipment Advantages and limitations				
Week 4	Liquid Penetrant Testing (PT) Principles liquid penetrant testing Equipment and techniques for PT Detection and evaluation of surface defects Advantages and limitations				
Week 5	 Magnetic Particle Testing (MT) Principles of magnetic particle testing Equipment and techniques for MT Detection and evaluation of surface and near-surface defects Advantages and limitations 				
Week 6	 Eddy Current Testing (ET) Principles of eddy current testing Eddy current probes and instrumentation Applications and limitations of ET 				

	Conductivity and thickness measurement using ET
	Ultrasonic Testing (UT)
	Principles of ultrasonic wave propagation
Week 7	UT equipment and transducers
	Interpretation of UT readings and detection of defects
	Advantages and limitations
Week 8	•
	Radiographic Testing (RT)
	Principles of radiographic imaging
Week 9	RT equipment and exposure techniques
	Interpretation of radiographic images and identification of defects
	Advantages and limitations
	Thermography Testing
	Principles of thermography testing
Week 10	Thermography testing equipment
WCCK 10	Interpretation of thermography images and identification of defects
	Advantages and limitations
	Acoustic emission (AE) testing
	Principles of Acoustic emission (AE) testing
Week 11	AE equipment
31 GGM = 2	Interpretation of Acoustic emission (AE) testing results and identification of defects with
	localization
	Advantages and limitations
	Hardness testing
	Principles of Hardness testing
Week 12	Hardness testing techniques
	Interpretation of Hardness testing results
	Advanced Hardness testing techniques
	Advantages and limitations
	Leak Testing
	Definition and importance of Leak Testing
Week 13	Principles of Leak Testing
	Applications of Leak Testing in various industries
	Advantages and limitations
Week 14	•
	Shearography Testing
	Principles of Shearography testing
Week 15	Shearography testing equipment
	Interpretation of Shearography images and identification of defects
	Advantages and limitations

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1	Lab 1: Liquid Penetrant Testing (PT)		
Week 2	Lab 2: Ultrasonic Testing (UT)		
Week 3	Lab 3: Magnetic Particle Testing (MT)		
Week 4	Lab 4: Eddy Current Testing (ET)		
Week 5	Lab 5: Visual Inspection (VI)		
Week 6	Lab 6: Hardness Testing		
Week 7	Lab 7: Acoustic Emission Testing (AE)		

Learning and Teaching Resources مصادر التعلم والتدريس				
Text Library?				
Required Texts	"NON-DESTRUCTIVE TESTING" by BARRY HULL and VERNON JOHN (1988).	Yes		
Recommended Texts	"Non-Destructive Testing Techniques" by RAVI PRAKASH (2012).	Yes		
Websites				

Grading Scheme مخطط الدر جات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group	C - Good	جيد	70 - 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

automatic rounding outlined above.		

MODULE DESCRIPTION FORM

Module Information						
	معلومات المادة الدراسية					
Module Title	POW	DER METALLU	RGY	Modu	ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MAE473			☑ Lecture☑ Lab	
ECTS Credits		6			☐ Tutorial	
SWL (hr/sem)		150			☐ Practical ☐ Seminar	
Module Level		37	Semester o	Delivery 7		7
Administering Dep	partment	MAE	College	ENGINE	ERING	
Module Leader	KHULOOD I. D	AOOD	e-mail	Khuloo	d.dawood@uoba	isra.edu.iq
Module Leader's	Acad. Title	lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail	E-mail		
Scientific Committee Date	tee Approval	01/06/2023	Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
	1. Preparing and qualifying engineers to meet the requirements of the labor market in the private and public sectors in materials engineering.				
	2. Providing distinguished academic programs in the field of materials engineering, both theoretical and practical, that comply with international standards of academic quality and meet the needs of the labor market.				
Module Aims أهداف المادة الدر اسية	3. Developing and improving scientific research in the fields of materials engineering, writing programs for solving differential equations and complex functions, data processing, digital signal analysis and control.				
	4. Preparing a stimulating environment for faculty members to develop their knowledge and educational and research skills.				
	5. Building and developing partnerships with the governmental and private sectors and the community with all its various institutions.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 33. Knowledge the powder properties . 34. Describe the testing methods of powder properties . 35. Characterize powder and their effect on final products. 36. Describe methods of powder productions. 37. Knowledge the effect of powder production methods on particle properties 38. Describe the powder compaction methods. 39. Classify the deferent compaction techniques 40. Define sintering process. 41. List the sintering methods and sintering atmosphere 42. Listing the powder metallurgy applications. 				
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Part I- powder charicterization. Chemical composition, Particle size and distribution, Particle shape, Specific surface, Apparent density, Flow rate, Pressing properties: Green density, Green strength, Green spring, Pressing properties: Green density, Green strength, Green spring, Properties of sintered compacts: Dimensional change during sintering, Sintered density, Porosity, Mechanical properties of sintered compacts [15 hrs] Powder Manufacturing Mechanical Processes: Machining, Crushing, Milling, Shotting, Graining, and				

Physico-Chemical and Chemical Processes: Condensation method, Thermal decomposition method, Reduction method, Electrodeposition method, Precipitation from aqueous solution, Precipitation from fused salts, Gaseous reduction process, Intergranular corrosion, Oxidation and decarburization. [15 hrs]

-Powder Conditioning: Preliminary heat treatment, Blending and mixing. [10 hrs]

Powder Compaction. Pressureless shaping technique. [10hrs]

Cold pressure shaping technique. [11 hrs]

Part B – Pressure shaping technique:

Pressure shaping technique with heat: Hot Pressing, Sinter forging, Hot rolling, Hot – Isostatic compaction, Spark sintering, Hot coining [12 hrs]

Sintering

Stages of sintering, Mechanisms of sintering, Liquid phase sintering, Infiltration, Sintering atmosphere,[12 hrs]

Applications Bearing materials, Friction materials, Tool materials, Ferrites, Cermets Heat [13 hrs]

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)

الحمل الدراسي للطالب					
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدراسي المنتظم للطالب أسبو عيا الحمل الدراسي المنتظم للطالب خلال الفصل					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

	Module Evaluation						
	تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome						
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment Projects / Lab. 1		1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)						
	المنهاج الاسبوعي النظري					
	Material Covered					
Week 1	Characterization and Testing of Metal Powders					
Week 2	Chemical composition, Particle size and distribution, Particle shape, Specific surface, Apparent density, Flow rate					
Week 3	Pressing properties: Green density, Green strength, Green spring					
Week 4	- Properties of sintered compacts: Dimensional change during sintering, Sintered density, Porosity, Mechanical properties of sintered compacts Powder Manufacturing					
Week 5	Mechanical Processes: Machining, Crushing, Milling, Shotting, Graining, and Atomization.					
Week 6	Physico-Chemical and Chemical Processes: Condensation method, Thermal decomposition method, Reduction method					
Week 7	Electrodeposition method, Precipitation from aqueous solution.					
Week 8	Precipitation from fused salts, Gaseous reduction process, Intergranular corrosion, Oxidation and decarburization					

Week 9	Powder Conditioning, Preliminary heat treatment, Blending and mixing
Week 10	Powder Compaction.
Week 11	Pressureless shaping technique
Week 12	Cold pressure shaping technique
Week 13	Pressure shaping technique with heat: Hot Pressing, Sinter forging, Hot rolling, Hot – Isostatic compaction, Spark sintering, Hot coining
Week 14	- Sintering: Stages of sintering, Mechanisms of sintering, Liquid phase sintering, Infiltration, Sintering atmosphere
Week 15	Applications: Bearing materials, Friction materials, Tool materials, Ferrites, Cermets
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Lab 1: preparing metal powder by chemical method				
Week 2	Lab 2 :preparing metal powder by mechanical method				
Week 3	Lab 3: sieve analysis and shape examination of particle powder				
Week 4	Lab 4: preparing green compact using uniaxial pressing				
Week 5	Lab 5: effect of compaction pressure on green density				
Week 6	Lab 6: effect of particle size on green density				
Week 7	Lab 7: sintering of green compact in controlled atmosphere				

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Library?					
Required Texts	Powder metallurgy technology , G.S. Upadhyaya, <i>First</i> published August 2002	no			
Recommended Texts	Powder metallurgy and particulate materials processing, R.M. German	No			
Websites					

	Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Cuesus	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية					
Module Title	Composite Materials		Module Delivery		
Module Type	Basic learning activities (B)			☑ Theory	
Module Code	MAE474			☑ Lecture☐ Lab☐ Tutorial☐ Practical	
ECTS Credits	6				
SWL (hr/sem)	150			☐ Seminar	
Module Level		38	Semester of Delivery 7		7
Administering Department		Materials Engineering	College Engineering		
Module Leader Safaa A. S. Almtori		e-mail	Safaa.saleh@uobasrah.edu.iq		
Module Leader's Acad. Title		Assit. Professor	Module Leader's Qualification Ph.D.		Ph.D.

Module Tutor	Name (if available)		e-mail	E-mail	
Peer Reviewer Name Name		Name	e-mail	E-mail	
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	3.0

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module None Semester					
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Aims أهداف المادة الدر اسية	The objective of studying composite materials is to identify the most important knowledge of composite materials. Also, learning about the different types of composites according to different matrix and fillers as well as all composites are synthetic composite materials. This course aims to learn and gave the knowledge about how to prepared composite materials and produces composite materials by different process depend on to the types of matrix and filler by changing both matrix and filler to produce different composite materials Also, in this course the student will study the types of shape of fillers because the different shapes and matrix will effect on the properties of the composites materials as well as on the reason of synthetic composites materials to identify the types of composites materials which are used in application. so we can to change the most important types and to improvement the mechanical properties for each type of composites materials, and how to use it in the different applications according to changing matrix or fillers. The course also aims to study the effect of composites materials on the life by tailoring composites materials which are consisting metals, polymers, cement and ceramic matrix with the different types of fillers fibers particles, and study mechanical and physical properties.			
Module Learning Outcomes	A- Knowledge and Understanding A1. An ability to apply knowledge of composite, types, and engineering			

	applications		
مخرجات التعلم للمادة الدراسية	A2. An ability to preparation and conduct experiments, as well as to chose appropriate composite.		
	A3. An ability to identify, and solve composite engineering problems.		
	A4. An ability to use the techniques, skills, and engineering tools		
	necessary for engineering applications.		
	B. Subject-specific skills		
	B1. The ability to design and select engineering composite for scientific and		
	industrial applications.		
	B2. The ability to think about solving problems related to the use of		
	composite materials and methods of avoiding them.		
	B3. Writing scientific reports, reading blueprints and analyzing problems engineering materials.		
	B4. The ability to keep pace with developments in composite materials and their properties.		
	Indicative content includes the following.		
	Part A — introduction of composite materials Definition of composite materials		
	Definition of composite materials - classification of composite materials according to their matrix, properties and		
	application [8 hrs].		
	-types of matrix, and additive, structures, tailored of composite materials,		
	shape of fillers, applications, types of fibers, which are effect on tailoring		
Indicative Contents	composite materials, types of particles, structure of composite materials, comparison between composite materials matrix, fillers and properties,		
المحتويات الإرشادية	advantage and disadvantages of composite materials, [12 hrs]		
, .,	-fibers form and particles size, types of metals matrix, ceramic-matrix and		
	types of fibers, types of glass matrix, structure of composite materials,		
	continuous, short and woven fibers, fibers orientation, additive of cement		
	matrix,[10 hrs] Part B— processing of composite materials		
	Processing of composite materials depend on the cost and technology process,		
	polymer-matrix composite, thermoset and thermoplastic matrix, types of		
	thermoset and thermoplastic polymers, using fibers and particles additives,		
	processing of polymers matrix, method of forming unidirectional fibers		

composite, fabrication of high performance polymer matrix composite, impregnation composite polymers matrix, . [12 hrs]

-fabrication of metal-matrix composite methods, types of preform, mechanical properties of composite materials, fiber orientation effect on the tension test, isostress and isostrain—, classified of carbon fibers, the effect of damage of composite materials—on the mechanical properties—, brittle and ductile composite materials, strengthening of composite materials ,vibration damping ability, viscoelastic behavior of—polymer composite materials—, tailoring composite materials, polymers in cement matrix composites, filler surface treatment types and technology, using organic coupling agent . [18 hrs]

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

- 1- Explanation and clarification through lectures.
- 2- Display scientific materials with projectors: data show, smart boards, plasma screens.
- 3- Self-learning through homework and mini-projects within the lectures.
- 4- Graduation projects.
- 5- Scientific visits.
- 6- Seminars held in the department.
- 8- Summer training.

Strategies

Assessment methods

- 1- Short exams (Quiz).
- 2- Homework.
- 3- Semester and final exams for theoretical and practical subjects.
- 4- Small projects within the lesson.
- 5- Interaction within the lecture.
- 6- Reports.

Student Workload (SWL) الحمل الدراسي للطالب					
Structured SWL (h/sem) 92 Structured SWL (h/w) 4 الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	5% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	5% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	1.5 hr	20% (10)	7	LO # 1-7	
assessment	Final Exam	2 hrs	50% (50)	16	All	
Total assessme	ent		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction of composite materials .			
Week 2	Definition of composite materials - classification of composite materials according to their matrix, properties and application			
Week 3	types of matrix, and additive, structures, tailored of composite materials, shape of fillers			
Week 4	applications, types of fibers, which are effect on tailoring composite materials, types of particles, structure of composite materials			

Week 5	comparison between composite materials matrix, fillers and properties, advantage and disadvantages of composite materials
Week 6	fibers form and particles size, types of metals matrix, ceramic-matrix and types of fibers, types of glass matrix,
Week 7	structure of composite materials, continuous, short and woven fibers, fibers orientation, additive of cement matrix
Week 8	Processing of composite materials depend on the cost and technology process, polymer-matrix composite
Week 9	thermoset and thermoplastic matrix, types of thermoset and thermoplastic polymers, using fibers and particles additives
Week 10	processing of polymers matrix, method of forming unidirectional fibers composite, fabrication of high performance polymer matrix composite, impregnation composite polymers matrix
Week 11	fabrication of metal-matrix composite methods, types of preform, mechanical properties of composite materials
Week 12	fiber orientation effect on the tension test, isostress and isostrain
Week 13	classified of carbon fibers, the effect of damage of composite materials on the mechanical properties, brittle and ductile composite materials
Week 14	strengthening of composite materials ,vibration damping ability, viscoelastic behavior of polymer composite materials
Week 15	tailoring composite materials, polymers in cement matrix composites, filler surface treatment types and technology, using organic coupling agent

	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الاسبوعي للمختبر		
	Material Covered		
Week 1			
Week 2			
Week 3			

Week 4	
Week 5	
Week 6	
Week 7	

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	composite materials science & applications by Deborah	Yes		
Recommended Texts	Any book about composite materials	No		
Websites	Libraries sites in some scientific universities.			

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Suggest Croun	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

Module Information معلومات المادة الدراسية						
Module Title	Selection of Engineering Mar		Iaterials	Modu	ıle Delivery	
Module Type		Core			☑ Theory	
Module Code		MAE481		☑ Lecture☑ Lab		
ECTS Credits		7			☐ Tutorial	
SWL (hr/sem)	175				☐ Practical ☐ Seminar	
Module Level		40	Semester o	of Delivery 8		8
Administering Department		Materials	College	Engineering		
Module Leader	Ahmad K. Jassim		e-mail	ahmadkj1966@yahoo.com		om
Module Leader's	Acad. Title	Guest Lecture	Module Lea	odule Leader's Qualification Ph.D.		Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		1/06/2023	Version Number 1.0			

Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	Module Aims, Learning Outcomes and Indicative Contents		
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية		
Module Aims			

أهداف المادة الدر اسية	This course aims to teach the student how to select materials engineering for design and use as well as the main motivation of selection and selection process with some case study and applied CES Edu Pack software tutorial.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 1- Ability to apply engineering and management principles, and knowledge of economic decision-making to manage projects. 2- Understanding of the impact of materials engineering solutions on the environment, and knowledge of materials and devices for sustainable development. 3- An ability to identify, formulate, and solve engineering problems. 4- Understanding of the impact of engineering solutions on society and the responsibilities of the discipline. 5- The ability to design and select engineering materials for scientific and industrial applications. 6- The ability to think about solving problems related to the use of engineering materials and methods of avoiding them. 7- Writing scientific reports, reading blueprints and analyzing engineering materials. 8- The ability to keep pace with developments in engineering materials and
Indicative Contents المحتويات الإرشادية	 14- Introduction for selection of materials [7 hrs] 15- Selection process. [7 hrs] 16- Cost basis for selection of materials. [7 hrs] 17- Failure analysis. [7 hrs] 18- Selection for mechanical properties (Strength of materials). [7 hrs] 19- Selection for mechanical properties (Stuffiness). [7 hrs] 20- Selection for mechanical properties (Toughness). [7 hrs] 21- Selection for mechanical properties (Corrosion). [7 hrs] 22- Selection for mechanical properties (Cost). [7 hrs] 23- Case study: Materials property charts. [7 hrs] 24- Case study: The basics of materials selection. [7 hrs] 25- Case study: Examples for case study for selection materials. [7 hrs] 26- Material selection CES Edu Pack Tutorial Software. [7 hrs]

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	1- Explanation and clarification through lectures. 2- Display scientific materials with projectors: data show, smart boards,	

plasma screens.

- 3- Self-learning through homework and mini-projects within the lectures.
- 4- Apply CES Edu Pack Software tutorial.
- 5- Present group Project in the class.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدر اسي المنتظم للطالب أسبوعيا الحمل الدر اسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	68	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	175			

Module Evaluation تقييم المادة الدراسية						
	Time/Nu Weight (Marks) Week Due Outcome					
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessme	Total assessment 100% (100 Marks)					

Delivery Plan (Weekly Syllabus)		
المنهاج الاسبوعي النظري		
Material Covered		
Week 1 Introduction for selection of materials		

Week 2	Selection process	
Week 3	Cost basis for selection of materials	
Week 4	Failure analysis	
Week 5	Selection for mechanical properties (Strength of materials)	
Week 6	Selection for mechanical properties (Stuffiness)	
Week 7	Selection for mechanical properties (Toughness)	
Week 8	Selection for mechanical properties (Corrosion)	
Week 9	Selection for mechanical properties (Cost)	
Week 10	Case study: Materials property charts	
Week 11	Case study: The basics of materials selection	
Week 12	Case study: Examples for case study for selection materials	
Week 13	Material selection CES Edu Pack Tutorial Software	
Week 14	Material selection CES Edu Pack Tutorial Software	
Week 15	Presentation by student	
Week 16	Presentation by student	

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1	Apply CES Edu Pack Software for selection of materials			
Week 2	Apply CES Edu Pack Software for selection of materials			
Week 3	Apply CES Edu Pack Software for selection of materials			
Week 4	Apply CES Edu Pack Software for selection of materials			
Week 5	Apply CES Edu Pack Software for selection of materials			
Week 6	Apply CES Edu Pack Software for selection of materials			
Week 7	Apply CES Edu Pack Software for selection of materials			

	Learning and Teaching Resources	
	مصادر التعلم والتدريس	
Available in the Text		
	TEAL	Library?

Required Texts	Materials Selection in Mechanical Design, Fourth Edition, Michael F. Ashby Yes	
Recommended Texts	 Selection Engineering Materials, Kahtan K. Al-Khazraji and Osama S. Muhammed, University of Technology, Materials engineering department, Iraq Selection and use of engineering materials, third edition, Engineering materials properties and selection, Kenneth G. Budinski, Reston Publishing Company 	yes
Websites		

	Grading Scheme					
مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
C	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

	Module Information معلومات المادة الدراسية					
Module Title	X-Ray Dif	fraction and Mic	croscopy	Modu	ıle Delivery	
Module Type		Core		☐ Theory		
Module Code		MAE482			Lecture Lab	
ECTS Credits		7				
SWL (hr/sem)	175				☐ Practical ☐ Seminar	
Module Level		41	Semester of Delivery		8	
Administering Dep	partment	Dept. of engineering materials	College	College of engineering		
Module Leader	Nuha Hadi Jas	im	e-mail	Nuha.ja	ısim@uobasrah.e	edu.iq
Module Leader's	Acad. Title Assist. Pro. Dr.		Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail			
Scientific Committee Approval Date 01/06/2023		Version Nu	mber	1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

Module Aims أهداف المادة الدراسية	 The aim of studying the topics you mentioned, related to X-ray production, interference, diffraction, and electron microscopy, is to gain a comprehensive understanding of these techniques and their applications. By studying these topics, you aim to achieve the following: X-ray Production: Understand the principles and mechanisms involved in X-ray production, including continuous X-ray production and characteristic X-ray production. Interference and Diffraction: Explore the phenomenon of interference and diffraction of X-rays and understand their principles and applications in various fields. Bragg's Law: Gain knowledge of Bragg's Law, which describes the diffraction of X-rays by crystals, and its applications in X-ray crystallography. X-ray Absorption & Filtration: Understand the concepts of X-ray absorption and filtration, including their effects on X-ray imaging and material characterization. Monochromatic X-ray: Study the production and application of monochromatic X-rays, which have a single wavelength or energy. Diffraction Methods: Learn about different diffraction methods, including the Laue method, rotating crystal method, and powder method, and their applications in materials analysis. Diffractometer, Spectrometer: Understand the principles and operation of X-ray diffractometers and spectrometers used for analyzing the diffraction patterns of materials. Transmission Electron Microscope (TEM): Gain knowledge of TEM principles, construction, and operation, including sample preparation, lens defects, resolving power, depth of field, and depth of focus. TEM Application: Explore the applications of TEM in studying the microstructure, composition, and defects of materials at the atomic level. Scanning Electron Microscope (SEM): Understand the principles, construction, and operation of SEM, including its imaging capabilities and 			
	construction, and operation of SEM, including its imaging capabilities and applications			
Module Learning Outcomes مخرجات التعلم للمادة	The learning outcomes for studying the topics you mentioned, which include X-ray production, interference and diffraction, and electron microscopy, can include the following: Understanding of X-ray Production: Gain knowledge of the principles and mechanisms involved in X-ray production, including continuous X-ray and characteristic X-ray production.			
الدراسية	Mastery of Interference and Diffraction: Develop a thorough understanding of the phenomenon of interference and diffraction of X-rays, including the ability to apply the principles to analyze and interpret diffraction patterns.			

Application of Bragg's Law: Demonstrate knowledge and understanding of Bragg's Law and its application in X-ray crystallography and the determination of crystal structures.

Knowledge of X-ray Absorption and Filtration: Understand the concepts of X-ray absorption and filtration and their effects on X-ray imaging and material characterization.

Proficiency in Monochromatic X-ray Techniques: Acquire the skills to produce and work with monochromatic X-rays, which are essential for various applications, including high-resolution imaging and precise material analysis.

Competence in Diffraction Methods: Develop the ability to apply different diffraction methods, such as the Laue method, rotating crystal method, and powder method, for the analysis of crystalline materials.

Familiarity with Diffractometer and Spectrometer Operation: Gain practical experience in operating X-ray diffractometers and spectrometers, including sample preparation, data collection, and analysis.

Understanding of Transmission Electron Microscopy (TEM): Gain knowledge of the principles, construction, and operation of TEM, including sample preparation techniques, imaging parameters, and analysis of TEM images and diffraction patterns.

Application of TEM: Apply TEM techniques to study the microstructure, defects, and composition of materials at the atomic level, and understand their applications in materials characterization and research.

Proficiency in Scanning Electron Microscopy (SEM): Develop skills in operating SEM instruments, including sample preparation, image acquisition, and elemental analysis using energy-dispersive X-ray spectroscopy (EDS).

Application of SEM: Apply SEM techniques to investigate the surface morphology, topography, and elemental composition of materials, and understand their applications in various fields, including materials science, nanotechnology, and biological research.

Indicative content includes the following.

X-ray Production

Interference and Diffraction (4 Hours)

Braggs Law

Continuous X-ray

(4 Hours)

المحتوبات الإرشادية Characteristic X-ray

X-ray Absorption & Filtration

Monochromatic X-ray (4 Hours)

Diffraction Methods: Laue Method, Rotating Crystal Method, Powder Method

Indicative Contents

(4 Hours)
Diffractometer, Spectrometer
Transmission Electron Microscope (TEM) ,
Sample Preparation , Lens Defects
Resolving power, Depth of field, (4 Hours)
Depth of focus , TEM Construction
TEM Application, Scanning Electron Microscope (SEM) (8 Hours)
,SEM Construction , SEM Applications (8 Hours)

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.	

Student Workload (SWL) الحمل الدراسي للطالب			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	107	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	68	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	175		

Module Evaluation				
تقييم المادة الدراسية				
	Time/Nu	Weight (Marks)	Week Due	Relevant Learning

		mber			Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري			
	Material Covered			
Week 1	Introduction			
Week 2	X-ray Production			
Week 3	Interference and Diffraction			
Week 4	Braggs Law			
Week 5	Continuous X-ray			
Week 6	Characteristic X-ray			
Week 7	X-ray Absorption & Filtration			
Week 8	Monochromatic X-ray			
Week 9	Diffraction Methods: Laue Method, Rotating Crystal Method, Powder Method			
Week 10	Diffractometer, Spectrometer			
Week 11	Transmission Electron Microscope (TEM) ,			
Week 12	Sample Preparation , Lens Defects			
Week 13	Resolving power, Depth of field,			
Week 14	Depth of focus , TEM Construction			
Week 15	TEM Application, Scanning Electron Microscope (SEM)			
Week 16	,SEM Construction , SEM Applications			

Delivery Plan (Weekly Lab. Syllabus)	
المنهاج الاسبوعي للمختبر	
Material Covered	

Week 1	SEM sample preparation techniques
Week 2	TEM sample preparation techniques
Week 3	XRD sample preparation techniques
Week 4	
Week 5	
Week 6	
Week 7	

	Learning and Teaching Resources مصادر التعلم والتدريس			
	Text			
Required Texts	Lee, M. (2017). X-Ray diffraction for materials research: from fundamentals to applications. CRC Press.	Yes		
Recommended Texts	Seeck, O. H., & Murphy, B. (Eds.). (2015). X-ray Diffraction: Modern Experimental Techniques. CRC Press.	No		
Websites	https://www.nanoimages.com/sem-vs-tem/			

	Grading Scheme مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Cream	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

	Module Information معلومات المادة الدراسية					
Module Title	ADV	ANCED MATER	IALS	Mod	lule Delivery	
Module Type		C			☑ Theory	
Module Code		MAE483			⊠ Lecture □ Lab	
ECTS Credits		6				
SWL (hr/sem)		150			☐ Practical	
Module Level		42	Semester of Delivery 8		8	
Administering De	epartment	MAE	College	ENGI	ENGINEERING	
Module Leader	Atheed Habee	b Taha	e-mail	Atheed	d.taha@uobasrah.	edu.iq
Module Leader's	Acad. Title	Lecturer	Module Le	ader's (Qualification	Ph.D.
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail			
Scientific Committee Approval Date 01/06/2023		Version Nu	ımber	1.0		

Relation with other Modules			
	العلاقة مع المواد الدراسية الأخرى		
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

1. An ability to apply knowledge of physical science for the engineering materials and Nanomaterials. 2. Solving different engineering problems. 3. Give the ability to conduct different experiments or tests depending on the data and field of acknowledgment. 4. Improving their skills, and modern engineering tools. 5. The ability to select the proper engineering materials for scientific and industrial applications. 6. Reading and writing a scientific reports. 7. Analyzing engineering materials problems. -Electronic Materials Ohm's Law and Electrical Conductivity Band Structures of Solids Conductivity of Metals and Alloys Superconductivity Conductivity in Other Materials Semiconductors Applications of Semiconductors Insulators and Dielectrice Properties Polarization in Dielectrics Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity -Magnetic Materials Classification, Permeability, and the Magnetic Field Diamagnetic, Paramagnetic, Ferromagnetic, and Superparamagnetic Materials Domain Structure and the Hysteresis Loop The Curie Temperature Applications of Magnetic Materials Metallic and Ceramic Magnetic Materials Metallic and Ceramic Magnetic Materials Metallic and Ceramic Magnetic Materials	materials and Nanomaterials. 2. Solving different engineering problems. 3. Give the ability to conduct different experiments or tests depending on the data and field of acknowledgment. 4. Improving their skills, and modern engineering tools. 5. The ability to select the proper engineering materials for scientific and industrial applications. 6. Reading and writing a scientific reports. 7. Analyzing engineering materials problems. -Electronic Materials Ohm's Law and Electrical Conductivity Band Structures of Solids Conductivity of Metals and Alloys Superconductivity Conductivity in Other Materials Semiconductors Applications of Semiconductors Insulators and Dielectric Properties Polarization in Dielectrics Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity -Magnetic Materials Classification, Piezoelectricity, and the Magnetic Field Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and Superparamagnetic Materials Domain Structure and the Hysteresis Loop The Curie Temperature	Module Aims أهداف المادة الدر اسية	 Give the students important acknowledgments (theoretically and mathematically) about the physical properties of engineering materials. Developing the student's acknowledgments on Nanomaterials. Preparing the students and make them able to deal with the problems during their practical live after they graduated and solving the problems in industries. Developing and improving scientific research in the fields of materials engineering and nanomaterials. Improve the skills of the students to develop their knowledge and ability in the modern research field. Develop the partnerships with the private or governmental sectors to help the community in different fields through the scientific activities. 		
7. Analyzing engineering materials problems. -Electronic Materials Ohm's Law and Electrical Conductivity Band Structures of Solids Conductivity of Metals and Alloys Superconductivity Conductivity in Other Materials Semiconductors Applications of Semiconductors Insulators and Dielectric Properties Polarization in Dielectrics Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity -Magnetic Materials Classification of Magnetic Materials Magnetic Dipoles and Magnetic Moments Magnetization, Permeability, and the Magnetic Field Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and Superparamagnetic Materials Domain Structure and the Hysteresis Loop The Curie Temperature Applications of Magnetic Materials	7. Analyzing engineering materials problems. -Electronic Materials Ohm's Law and Electrical Conductivity Band Structures of Solids Conductivity of Metals and Alloys Superconductivity Conductivity in Other Materials Semiconductors Applications of Semiconductors Insulators and Dielectric Properties Polarization in Dielectrics Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity -Magnetic Materials Classification of Magnetic Materials Magnetic Dipoles and Magnetic Moments Magnetization, Permeability, and the Magnetic Field Diamagnetic, Paramagnetic, Ferromagnetic, and Superparamagnetic Materials Domain Structure and the Hysteresis Loop The Curie Temperature	Outcomes	 An ability to apply knowledge of physical science for the engineering materials and Nanomaterials. Solving different engineering problems. Give the ability to conduct different experiments or tests depending on the data and field of acknowledgment. Improving their skills, and modern engineering tools. The ability to select the proper engineering materials for scientific and 		
I MEIAITIC AND CETAMIC MAGNETICALS		Indicative Contents	 4. Improving their skills, and modern engineering tools. 5. The ability to select the proper engineering materials for scientific and industrial applications. 6. Reading and writing a scientific reports. 7. Analyzing engineering materials problems. -Electronic Materials Ohm's Law and Electrical Conductivity Band Structures of Solids Conductivity of Metals and Alloys Superconductivity Conductivity in Other Materials Semiconductors Applications of Semiconductors Insulators and Dielectric Properties Polarization in Dielectrics Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity -Magnetic Materials Classification of Magnetic Materials Magnetic Dipoles and Magnetic Moments Magnetization, Permeability, and the Magnetic Field Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and Superparamagnetic Materials Domain Structure and the Hysteresis Loop The Curie Temperature 		

- 1. Introduction the nanomaterial
- 2. Morphology of Nanomaterials
 - 2.1. Zero dimensional nanostructures: nanoparticles
 - 2.2. One-dimensional nanostructures: nanowires and nanorods
 - 2.3. Two-dimensional nanostructures: thin films
- 3. Special nanomaterial's
- 3.1 Carbon fullerenes and nanotubes. Micro and mesoporous materials. Core-shell structures.
 - 3.2 Organic-inorganic hybrids. Intercalation compounds.
- 3.3 Nanocomposites and nanograined materials. Inverse opals. Bio-induced nanomaterial.
- 4. Nanostructures fabricated
 - 4.1 Top-down approaches
 - 4.2 Bottom-up approaches
- 5. Characterization techniques for nanomaterial
 - 5.1 Structural characterization. Chemical characterization.
 - 5.2 Physical properties of nanomaterial
- 6. Applications of nanomaterials.

-Photonic Materials

-Photonic Materials

The Electromagnetic Spectrum Refraction, Reflection, Absorption, and Transmission Selective Absorption, Transmission, or Reflection

Examples and Use of Emission Phenomena

Fiber Optic Communication System

Learning and Teaching Strategies					
	استر اتيجيات التعلم والتعليم				
Strategies					
	-Assessment methods				
	1- Short exams (Quiz).				
	2- Homework.				

- 3- Semester and final exams for theoretical and subjects.
- 4- Small projects within the lesson.
- 5- Activity and sharing during the lecture.
- 1. 6- Reports.

Student Workload (SWL)					
الحمل الدراسي للطالب					
Structured SWL (h/sem) 92 Structured SWL (h/w) 4					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation تقييم المادة الدراسية							
Time/Nu weight (Marks) Week Due Outcome							
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11		
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7		
assessment	Projects / Lab.	1	10% (10)	Continuous			
	Report	1	10% (10)	13	LO # 5, 8 and 10		
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7		
assessment	Final Exam	2hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري					
	Material Covered				
	-Electronic Materials				
Week 1	Introduction to electronic materials.				
	Ohm's Law and Electrical Conductivity				

Week 2	Band Structures of Solids			
	Conductivity of Metals and Alloys			
Week 3	Superconductivity			
	Conductivity in Other Materials			
Week 4	Semiconductors			
WCCK 4	Applications of Semiconductors			
	Insulators and Dielectric Properties			
Week 5	Polarization in Dielectrics			
	Electrostriction, Piezoelectricity, Pyroelectricity, and Ferroelectricity.			
	-Magnetic Materials			
	-Introduction			
Week 6	Classification of Magnetic Materials			
	Magnetic Dipoles and Magnetic Moments			
	Magnetization, Permeability, and the Magnetic Field			
Week 7	Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and Superparamagnetic Materials.			
,, , , ,	Domain Structure and the Hysteresis Loop			
	The Curie Temperature			
Week 8	Applications of Magnetic Materials			
	Metallic and Ceramic Magnetic Materials			
	-Nanomaterial			
Week 9	1. Introduction the nanomaterial			
+	2. Morphology of Nanomaterials			
Week 10	2.1. Zero dimensional nanostructures: nanoparticles			
Week 10	2.2. One-dimensional nanostructures: nanowires and nanorods			
	2.3. Two-dimensional nanostructures: thin films.			
	3. Special nanomaterial's			
Week 11	3.1 Carbon fullerenes and nanotubes. Micro and mesoporous materials. Core-shell structures.			
	3.2 Organic-inorganic hybrids. Intercalation compounds.			
	3.3 Nanocomposites and nanograined materials. Inverse opals. Bio-induced nanomaterial.			
	4. Nanostructures fabricated			
Week 12	4.1 Top-down approaches			
	4.2 Bottom-up approaches			
+	5. Characterization techniques for nanomaterial			
Week 13	5.1 Structural characterization. Chemical characterization.			
	5.2 Physical properties of nanomaterial.			
	6. Applications of nanomaterials			
Week	-Photonic Materials			
14	The Electromagnetic Spectrum Refraction, Reflection, Absorption, and Transmission			
+ Week 15	Selective Absorption, Transmission, or Reflection			
WEEK 13	Examples and Use of Emission Phenomena Eiler Outin Communication Syntam			
W1-16	Fiber Optic Communication System Proposed to the final Event			
Week 16	Preparatory week before the final Exam			

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				
Week 5				
Week 6				
Week 7				

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
Text Available in the Library?					
Required Texts	Required Texts The Science and Engineering of materials/ Donald R. Askeland. 6 th ed.				
Recommended Texts	No				
Websites	Any useful websites				

Grading Scheme مخطط الدرجات						
Group	Grade التقدير			Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
C	B - Very Good	Very Good جيد جدا		Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية							
Module Title	Pro	oject Managemer	nt	Modul	le Delivery		
Module Type		В			☒ Theory		
Module Code		MAE484			☑ Lecture ☑ Lab		
ECTS Credits		6			☐ Tutorial		
SWL (hr/sem)		150			□ Practical □ Seminar		
Module Level		43	Semester o	Delivery 8			
Administering De	epartment	Type Dept. Code	College	Type College Code			
Module Leader	Lec. Assis. Su	ndus Khaleel Alfaiz	e-mail	Sondos.hussein@uobasrah.edu.iq		ah.edu.iq	
Module Leader's	Acad. Title	Lecturer Assistant	Module Leader's Qualification M.S		M.Sc.		
Module Tutor	•		e-mail	E-mail			
Peer Reviewer Name None		e-mail	E-mail	E-mail			
Scientific Committee Approval Date		17/06/2023	Version Nu	ımber	1.0		

3

Relation with other Modules						
العلاقة مع المواد الدراسية الأخرى						
Prerequisite module None Semester Level 2 – Semester 2						

Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

Module Aims

أهداف المادة الدر اسية

Course Description:

Project management is the application of knowledge, skills, tools, and techniques to project activities to meet the project's requirements. Basic project management for engineering; project development and economic justification; estimating; scheduling; network methods; critical path analysis; earned value management; project organizational structures; project risk assessment; resource allocation; ethics; characteristics of project managers; decision making processes; quality management.

Objectives:

Develop the ability to identify, formulate, and solve problems of cost analysis in engineering decision making and the management and control of complex projects. Engineering project management topics include methods for planning, evaluation, organization, ethics, budgeting, cost estimating, scheduling, expediting, reporting, monitoring, and implementation of projects. Engineering economics topics including interest formulas and equivalence calculations, inflation, measures of investment worth, after tax analysis, depreciation accounting and replacement analyses, life cycle costing and design economics, risk analysis and cost-benefit analysis.

Module Learning Outcomes

مخرجات التعلم للمادة الدراسية

Participants will be able to understand and implement simple tools and techniques of the main project management areas composed of: project integration management, project scope management, project time management, project costs management, and project risk management and industrial engineering. So that he has the ability to accomplish the following: -

Understand the current state of the project management professional

- Apply project management tools and techniques
- Explore the appropriate methods to initiate, plan, execute, control and close projects
- Perform economic calculations involving the Transportation technique using standard formulas and tables.
- Compare alternatives via utilizing the decision theory, Game theory, Linear progress to get the most economical procedure.
- Define and select a project and proper organizational structure to manage it.
- Create a structured project plan that includes resource and cost analysis and manages risk.
- Apply economic and project management knowledge to schedule resources, identify constraints, and track time in a project.

This course will cover the basic tools, skills, and knowledge necessary to successfully manage a project through its inception, design, planning, construction, and transition phases. Students will learn a variety of tools and techniques to see what works and what does not in the real world of project management.

Indicative Contents

المحتوبات الار شادية

The courses discuss the details of the processes required to manage timely completion of the project. It also includes the processes involved in estimating, budgeting and controlling costs so that the project can be completed within the approved budget. So that the vocabulary of the curriculum and the distribution of lecture hours will be as follows: -

- 1- General Introduction [4hrs]
- 2- Project Planning Bar chart (Gantt Chart) [4hrs]
- 3- Project Planning Network Analysis Technique [4hrs]
- 4- Program Evaluation and Review Technique (PERT) [4hrs]
- 5- Resource Management (Levelling and Smoothing) [4hrs]
- 6- Estimation of Construction Cost [4hrs]
- 7- Reducing Project Duration by Crashing Management [4hrs]
- 8- Conflict and negotiation Management [4hrs]
- 9- Project Risk Management [4hrs]
- 10- Project Evaluation by Earned Value management [4hrs]
- 11- Linear Programming (Operation Research- Graphical & Simplex method) [4hr]
- 12- Material Management and Inventory Control [4hrs]
- 13- Transportation Problems[4hrs]
- 14- Decision theory & Game theory [4hrs]
- 15- Total quality management[4hrs]

I	Learning	and	1	Teaching	Stra	tegies

استراتيجيات التعلم والتعليم

Strategies

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	92	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	58	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل				

Module Evaluation تقييم المادة الدراسية					
Time ml			Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	General Introduction [4hrs]			
Week 2	Project Planning - Bar chart (Gantt Chart) [4hrs]			
Week 3	Project Planning Network Analysis Technique [4hrs]			
Week 4	Program Evaluation and Review Technique (PERT) [4hrs]			
Week 5	Resource Management (Levelling and Smoothing) [4hrs]			
Week 6	Estimation of Construction Cost [4hrs]			
Week 7	Reducing Project Duration by Crashing Management [4hrs]			
Week 8	Conflict and Negotiation Management [4hrs]			
Week 9	Project Risk Management [4hrs]			
Week 10	Project Evaluation by Earned Value management [4hrs]			
Week 11	Linear Programming (Operation Research- Graphical & Simplex method) [4hr]			

Week 12	Material Management and Inventory Control [4hrs]
Week 13	Transportation Problems[4hrs]
Week 14	Decision theory & Game theory [4hrs]
Week 15	Total quality management[4hrs]
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر					
	Material Covered				
Week 1	Lab 1: Introduction to Agilent VEE and PSPICE				
Week 2	Lab 2: Thévenin's / Norton's Theorem and Kirchhoff's Laws				
Week 3	Lab 3: First-Order Transient Responses				
Week 4	Lab 4: Second-Order Transient Responses				
Week 5	Lab 5: Frequency Response of RC Circuits				
Week 6	Lab 6: Frequency Response of RLC Circuits				
Week 7	Lab 7: Filters				

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	إدارة المشاريع الإنشائية والعلاقات المهنية: احسان العطار	Yes			
Recommended Texts	A Guide to the project management body of knowledge, 4th edition, PMI 2. Project Management, A Systems Approach to Planning, Scheduling, and Controlling, 10th edition, KERZNER 3. Principles of Construction management By: Roy Piltcher 4. Construction management By: Robert Hares & Frank Hares 5. Operations Management Creating Value Along the Supply Chain Russell - Chapter 9: Project management", By: Russell and Taylor (2011)	No			
Websites	https://www.pmi.org/https://www.pmi.org/pmbok-guide-standards/foundational/pmbo	k			

Grading Scheme				
مخطط الدرجات				
Group Grade التقدير Marks Definition				

			(%)	
	A - Excellent	امتياز	90 - 100	Outstanding Performance
	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required