Ministry of Higher Education and Scientific Research

Scientific Supervision and Evaluation Authority

Department of Quality Assurance and Academic Accreditation

Description form of the academic program of the Department ofphysics

University Name: Basra

College/Institute Name: Science

Scientific Department Name: physics

File filling date

Head of department : Prof, Dr. Wa'il A Godaymi Al-Tumah

Signature:

Scientific Associate Name: Prof. Alaa Hassan Abdullah

Signature: Hay H. Ab

Date:

Check the file before

Division of Quality Assurance and University Performance

Name of the Director of the Quality Assurance and University Performance

Division:

Date

Signature

Approval of the Dean of the College

Description form of the academic program

This academic program description provides a necessary summary of the most important characteristics of the program and the learning outcomes that the student is expected to achieve, demonstrating whether he has made the most of the available opportunities

demonstrating whether he has made the most of the available opportunities								
1. Educational	University of Basra - College of Science							
institution								
2. Scientific	physics department							
department/center								
3. Name of the academic	General physics							
or professional program								
4. Name of the final	Bachelor of Science in Physics							
certificate								
5. Academic system:	Courses							
Annual/courses/others								
6. Accredited	Abet							
accreditation program								
7. Other external	Many official holidays							
influences								
8. Date the description								
was prepared								
9. Objectives of the academ								
	t the basic principles of physics							
	ectives of the program (printed) and are in line with the vision of							
the educational institut								
	ed generation that is armed with science and adopts it as a sound							
	t radical changes and adopts scientific knowledge and the scientific							
	alyzing, and adapting to the development of technologies to keep							
pace with the expansion								
	nic climate suitable for study and research, enabling the student to							
	es and contribute to finding solutions to problems using appropriate							
and suitable techniques								
	ave a continuous evaluation process for programmed time periods							
that show that the goals								
	in general physics and its practical applications, who are							
	g the country's need for development and progress and who can							
	abor market in state institutions and industry sectors.							
	tinuous calibration and evaluation process for all components of							
1 5	the program, which shows the desired degree and based on which the goals were set.							
10. 11. Required program outcomes and teaching, learning and								
	evaluation methods							
	A- Cognitive objectives							
	1- Make the student able to know and understand the basics of							
	physics.							
	2- Make the student able to know and understand the practical							
	applications of physics.							

		from a mather 4- Make the physics using B - The program 1 - Correct scien 2 - Constructive 3 - Enabling the problems related 4- The ability to gained from his industrial and corrections and letter the problems are letter to gained from his industrial and corrections and letter the problems related 4- The ability to gained from his industrial and corrections and letter the physics of the physic	scientific discussions and student to understand and to physical laws apply the theoretical and pstudies in the areas of pracommercial constraints.	expressing o solve sciention	pinions.				
	 1- Use a drawing board and pen. 2- Presenting lectures using Power Point. 3- Using practical study methods for students through the practical laboratories available in the department and under t supervision of the academic staff. 4- Graduation projects. 								
11.		1- Follow up on dai 2- Conducting daily 3- Monthly tests 4- Final exam	ly attendance						
12.		13. Program structure							
Educational level	Item No.	Item type	Item Name	Credit Hou theoretical	practical				
First	Phy101	department Mandatory	Quantum principles	3	3				
First	Phy102	department Mandatory	Material properties	2	3				
First	Phy103	department Mandatory	Electricity and Magnetism	3	3				
First	Phy104	department Mandatory	light	3	3				
First	Comp127	College Mandatory	Computer (1)	3					
First	Math101	College Mandatory	Differentiation and integration(1)	3					
First	Math102	College Mandatory	Differentiation and integration(2)	3					
First	Math129	College Mandatory	Linear algebra	3					
First	Ch131	College Mandatory	Chemical	3	3				

First	Cul101	University	culture	3	
		Mandatory			
First	S101	University Mandatory	sport	1	
First	Lit101	University Mandatory	Arabic literature	2	
Second	Phy201	department Mandatory	Analytical Mechanics	2	
Second	Phy203	department Mandatory	Electricity and Magnetism	3	3
Second	Phy204	department Mandatory	Light	3	3
Second	Phy207	department Mandatory	Modern physics	3	
Second	Phy208	department Mandatory	Electronic principle	3	3
Second	Phy212	department Mandatory	Thermodynamic	3	
Second	Phy227	department Mandatory	Foundation of Geophysics	3 2	
Second	Math201	College Mandatory	Advanced Differentiation and integration	3	
Second	Math214	College Mandatory	Differential equations	3	
Second	Comp260	College Mandatory	Computer(2)	3	3
Second	Cul201	University Mandatory	Culture	3	
The third	Ph 301	Compulsory department	Quantum mechanics	3	
The third	Ph 302	Compulsory department	Analytical mechanics	2	
The third	Ph 303	Compulsory department	Electromagnetism	3	
The third	Ph 307	Compulsory department	Atomic physics	3	3
The third	Ph 308	Compulsory department	Electronic	3	3
The third	Ph 315	Compulsory department	Mathematical physics	3	
The third	Ph 326	Compulsory department	Astronomy	3	
The third	Ph 327	Compulsory	Computers(3)	3	3
The third	Ph 301	Compulsory university	English literature	3	
The third	Ph 309	Optional department	Solar energy	2	
The third	Ph 310	Optional department	Logical circuits	2	
The third	Ph 318	Optional department	X-ray	2	
The third	Ph 338	Optional department	Physics of devices	2	

The third	Ph 321	Optional	Detectors and	2	
		department	detection methods		
The third	Ph 322	Optional	Spectroscopy	2	
		department			
The third	Ph 342	Optional	The theory of	2	
		department	relativity		
The fourth	Ph 401	Compulsory	Quantum	3	
		department	mechanics		
The fourth	Ph 405	Compulsory	research project		
		department			
The fourth	Ph 409	Compulsory	statistics	3	
		department			
The fourth	Ph 413	Compulsory	laser	3	3
		department			
The fourth	ph 415	Compulsory	Advanced	4	
	•	department	mathematics		
The fourth	Ph 427	Compulsory	solid state	3	
		department			
The fourth	C460	Compulsory	computers	2	3
		collage	r and a		
The fourth	400ph	Compulsory	philosophy	2	
	1	university	' ' '		
The fourth	Ph 412	Optional	optical devices	2	
		department			
The fourth	Ph 420	Optional	microwave	2	
		department			
The fourth	Ph 421	Optional	antennas	2	
		department			
The fourth	Ph 428	Optional	advanced solid	2	
		department			
The fourth	Ph 429	Optional	thin membranes	2	
		department			
The fourth	Ph 430	Optional	semiconductors	2	
		department			
The fourth	Ph 431	Optional	liquid crystals	2	
		department			
The fourth	Ph 432	Optional	polymer	2	
		department	' '		
The fourth	Ph 436	Optional	medical physics	2	
		department	, , , , , , , , , , , , , , , , , , , ,		
The fourth	Ph 437	Optional	molecular	2	
		department			
The fourth	Ph 457	•	nano	2	

Levels	
level one	0-36
Second Level	37-72
The third level	73-108

fourth level	109-143
--------------	---------

Unite for Graduation 143	
Mandatory Department	78
Optional Department	20
College requirements	32
University requirements	13

1. Planning for personal development

- 1. Make the student capable of skills in laboratory group work
- 2. Making the student able to pass job interviews and demonstrate the academic personality required at work
- 3. Make the student able to pass professional and scientific tests organized by local or international bodies
- 4. Make the student capable of self-development after graduation
- 5. Encouraging faculty members to obtain the highest academic and administrative ranks
- 6. Continuous improvement and development of faculty members through training programs and workshops
- 1. Admission standard (establishing regulations related to admission to the college or institute)

According to the requirements of the Ministry of Higher Education and Scientific Research(central admission)

1. The most important sources of information about the program

- 1. The curriculum approved by the Ministry of Higher Education and Scientific Research and its guidelines
- 2. Decisions and recommendations of the scientific committees in the college and the Physics Department in particular
- 3. Developmental and rehabilitation courses in teaching methods
- 4. Internet research for similar experiences
- 5. Personal experiences of pioneering professors in the college and department

																1
art																\vdash
oxes coi	responding to the in	dividual skills	outc	omes	from	the	evalu	ation	prog	gram						-
			The	skill	s requ	uired	from	the p	rogr	am						t
Course code Course name	Mandatory or Optional		gnitiv			Skills objectives of the program					otion ie ain		d	Gen tran qual skill emp	sfe lify s r	
						Т		T	1	1		T			pers deve	elo
PHY101	Mechanics I	Mandatory	A1 √	A2 √	A3 √	A4 √	B1 √	B2 √	B3	B4 √	C1 √	C2 √	C3 √	C4 √	D1 √	
PHY102		Mandatory	1	1	1	1	1	1	1	1	1	1	1	1	1	l
PHY103		Mandatory	1	1	1	1	V	V	V	V	V	1	1	1	V	İ
PHY104	Light	Mandatory		1	$\sqrt{}$										1	
COMP1	Programming	Mandatory	1	1	1	√	V	V	1	V	√	√	1	1	V	
MATH1		Mandatory	1	1	√	√	1	1	1	V	1	√	√	1	1	
MATH1		Mandatory	1	1	√	1	1	1	1	1	1	1	1	1	1	
MATH1	29 Linear algebra	Mandatory			√		1	1	1	1					1	
CHM13	1 Chemistry	Mandatory	V	V	V	V	V	V	1		V	V	1	V	1	
C101	Culture	Mandatory	1	1	1	1	1	1	V		1	1	1	1	V	Ì
UNI101	sport	Mandatory		1											1	
L101	Arabic literature	Mandatory	1	1	1	1	V	1	1		1	1	1	1	V	l
PHY201	Mechanics I	Mandatory	1	1	1	1	1	1	1		1	1	1	1	V	
PHY203	Magnetism	Mandatory	1	1	1	1	1	1	1		1	1	1	1	V	
PHY204	Light	Mandatory					1	1	1		$\sqrt{}$				1	
PHY207	Modern physics	Mandatory	1	1	1	1	V	1	1		1	1	1	1	V	
PHY208	Principles of electronics	Mandatory	1	V	1	1	V	1	V		1	1	1	1	1	
PHY212	Thermodynami cs	Mandatory	1	1	1	1	V	1	1		1	1	1	1	V	
PHY227		Mandatory	1	1	1	1	V	1	1		1	1	1	1	V	İ
MATH2		Mandatory	V	V	V	V	V	V	V		V	V	V	V	V	†

MATH214		Mandatory	1	1	1	1	1	1	1			1	1	1	1
COMP260	Programming in MATLAB	Mandatory	1	1	1	1	1	1	1		1	1	1	1	V
C201	Culture	Mandatory	V	1	1	V	V	1	1		1	V	1	V	V
P301	Quantum mechanics	Basic	V	V	1	1	1	1	√		√	V	V	√	1
P302	Analytical mechanics	Basic		1	√	√	V	√				√	√	√	√
P303	Electromagneti sm	Basic	V	√	√	√	1	√	√		1	1	√	√	√
P307	Atomic physics	Basic	1	1	1	1	1	1	1		1	1	1	1	V
P308	Electronics	Basic	√	1	1	√	1	1	$\sqrt{}$		√	1	1	V	1
P315	Mathematical physics	Basic	1	V	1	1	1	1	1		1	1	1	1	1
P326	Astronomy	Basic	√	1	1	√	1	√	V		√	1	1	V	1
COMP 327	Calculators (3(Basic	√	√	V	√	V	√	√		√	V	√	V	√
D301	English Literature	Basic	1	V	1	1	1	1	1		1	1	1	1	1
P309	Solar energy	optional	V	V	V	V	V	√	V		V	V	V	V	V
P310	Logic circuits	optional	√	√	V	√	√	√	V	√	√	V	√	√	√
P318	X ray	optional	√	1	1	√	1	1			√	V	1	V	√
P321	Reagents and detection methods	optional	V	V	V	V	V	V	V	1	V	V	V	V	V
P322	Spectroscopy	optional	V	1	1	√	V	√	V	V	√	1	√	V	√
P342	Theory of Relativity	Optional	V	1	1	V	1	1	1	1	1	1	V	1	1
F401	Quantum mechanics	Basic	1	√	1	1	1	1	1	1	1	1	1	1	V
P405	research project	Basic	V	V	1	V	1	1	1	1	1	1	1	1	1
P409	Statistics	Basic	√	1	√	√	√	√	√	√	$\sqrt{}$	1	√	√	√
P413	Laser	Basic	V	V	1	V	V	V	V	√	√	V	√	V	V
P415	Advanced mathematics	Basic	V	V	√	V	1	V	1	1	1	1	V	1	V
P427	solid state	Basic	V	V	V	V	V	V	V	√	√	V	V	V	√
COMP 460	Calculators (4(Basic	√	1	1	√	V	1	V	$\sqrt{}$	√	V	1	√	√
PH400	Philosophy	Basic	1	√	√	V	V	√	√	√		√	1	√	√

																1
D410	0 (11)	0.411	1.1	.,	1.1			.1			-1	1.1	-1	-1	.1	. 1
P412	Optical devices	Optional	√	1	1	V	1	√	√	1	√	1	√	√	√	
P420	Microwave	optional	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		1	V		1	$\sqrt{}$	1	V	$\sqrt{}$	$\sqrt{}$	1
P421	Antennas	optional		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	√	1	1	$\sqrt{}$	V	V	$\sqrt{}$	$\sqrt{}$	7
P428	Advanced solid	optional	V	V	V	V	1	1	1	V	1	V	1	1	√	١
P429	Thin films	optional		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	1	1	1	$\sqrt{}$	√	√	$\sqrt{}$		٦
P430	Semiconductor s	optional	V	V	V	V	V	V	V	V	V	V	V	V	V	٦
P431	Liquid crystals	optional					1	√	√	√	$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$		٦
P432	Polymer	optional	V	V	√	V	V	V	V	V	V	√	V	V	V	٦
P436	Health physics	optional	V	V	√	V	V	V	V	V	V	√	V	V	V	٦
P437	Molecular	optional	√	V	√	1	1	V	V	V	V	V	V	V	V	٦
P457	Nano Technology	optional	V	V	V	V	V	V	V	V	V	V	V	V	V	٦

First level: Principles of Mechanics, 101 PH

Course description form

Course description

Studying the behavior of particles whose speed is less than the speed of light. That is, describing the physical properties of objects. The study is divided into two parts, which deals with:

- 1-Studying movement by studying its properties such as speed, displacement, and acceleration. This part is part of what is called kinematics.
- 2-Studying the causes of movement, that is, studying the relationship between movement and its causes by studying Newton's laws and the laws of conservation of energy and momentum. This part of the study falls within what is called dynamics.

1. Educational institution	University of Basrah- College of Science
2. Scientific department/center	Physics
3. Course name/code	Principles of Mechanics Ph 101
4. Programs in which it is included	Bachelor's, Master's, Doctorate
5. Available attendance forms	Weekly
6. Semester/year	2020-2021
7.Number of study hours (total)	60credit hours
Date this description was prepared	2020-9-1

1. Course objectives

- 1-Studying movement by studying its properties such as speed, displacement, and acceleration. This part is part of what is called kinematics.
 - 2-Studying the causes of movement, that is, studying the relationship between movement and its causes by studying Newton's laws and the laws of conservation of energy and momentum. This part of the study falls within what is called dynamics.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

Introducing the student to an introduction to the principles of classical mechanics Studying movement by studying its properties such as speed, displacement, and acceleration, and this part is part of what is called kinematics.

Studying the causes of movement, that is, studying the relationship between movement and its causes by studying Newton's laws and the laws of conservation of energy and momentum. This part of the study falls within what is called dynamics

10. Course structure

10. 00	urse structur				
B2 - Ir	- Hours e skins ouje iferring mov	Required learning outcomes	Name of unit/or subject -	Teaching - method	Evaluation method
the first And the second The third is		Student understanding nonghatelsods	Vectors	theoretical + practical	daily and monthly _tests
	Hectures and 3th + 3p cational mea every week on methods	d discussions uns (scientific prese	Kinesiology mations and films) Position vector, displacement vector, rate	theoretical + practical	daily and monthly tests
	xam and lab y exam	understanding oratory reports of the lesson	of speed and instantaneous speed, rate of acceleration and instantaneous acceleration		
Seventh and eighth a C1- The ability	3th + 3p l eneryalue g tweekonvey	informationing ter	Semester exam Motion in one dimension p(equating stoflinoussin) gait, a the than prectical has post free	theoretical + practical and interpretin	daily and monthly gtests
The ninth and tenth	3th + 3p and learning every week	g methods Student	fall Movement in two dimensions, displacement vector, rate of speed and	theoretical + practical	-daily and monthly tests
2.Powerp	ion and direction		einstantaneous speed., rate of acceleration and instantaneous		tests
And the	ywteels	Student oratory reports understanding of the lesson	Equations of motion in two dimensions, projectile motion	theoretical + practical	daily and monthly tests
			ir se skilds sorthest eskildane late	theoretical d top enopica lab	daily and imonthly
fourteenth And the	veloping _t the	nofithe lesson student's mental a notablenical process pleaterstatiling and of the lesson		theoretical + practical	tests daily and monthly tests

10. Infrastructure	
	1- Required prescribed books
2- Main references (sources)	1- Physics for scientists and engineers with modern physics, Douglas C. Giancoli, 4th edition, 2014. 2- Fundamentals of physics, Halliday, Resnick and Walker, 10th edition, 2018 Community College. 2010
A-Recommended books and references (scientific journals, reports),	
B - Electronic references, Internet sites	

11- Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

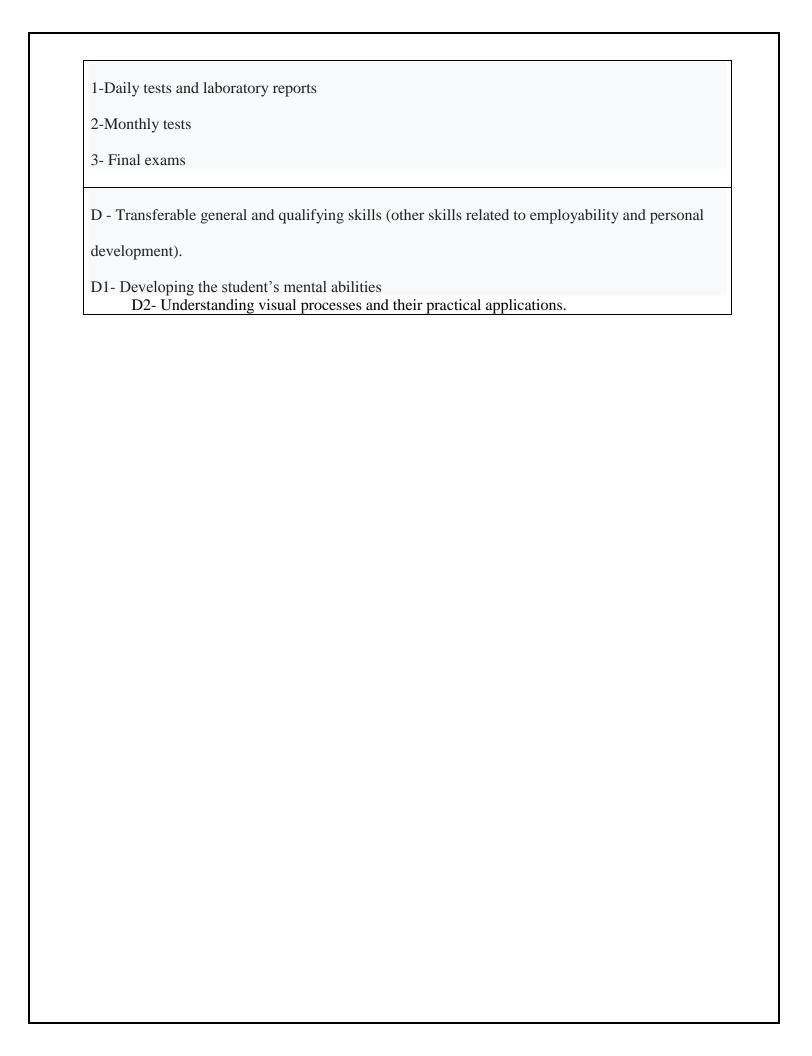
Activating twinning programs with international universities to learn about modern teaching

curricula and methods and exchange experiences

The first level is engineering optics P104

Course Description Form

Course Description


This course description provides a brief summary of optics and the fundamentals of engineering optics.

University of Basrah - College of Science
Physics
Engineering Optics
bachelor's ,Master's, PhD
Weekly
2020-2021
60 credit hours
1-9-2020

9. Course objectives

The student's ability to identify optics and the basics of engineering optics

10. Course outcomes and teaching, learning and evaluation methods
A- Cognitive objectives * Introduce the student to an introduction to visual phenomena
B - Skills objectives of the course . B1 – Acquire the skill of comparing visual phenomena
Teaching and learning methods
1.Future lectures and discussions 2.Using educational means (scientific presentations and films)
Evaluation methods
1-Daily tests and laboratory reports 2-Monthly tests
3- Final exams
C. Emotional and value objective C1- The ability to communicate information after presentation, discussion and interpretation C2- Linking information to reality and the extent of its impact on various practical fields
Teaching learning methods
1-Direct explanation and delivery of lectures. 2- Power point presentation and screen.
Evaluation methods

10. Course st	ructure				
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	Hours	Week
Daily and monthly tests	Theoretic al	the theoretical side Concepts of quantum mechanics Wave mechanics Probability	Student understanding of the lesson	3	the first And the second And the third
Daily and monthly tests	Theoretic al	the theoretical side Calibration and current density Schrödinger equation with applications	Student understanding of the lesson	3	Fourth fifth And the sixth
Daily and monthly tests	Theoretic al	Semester exam the theoretical side Serious at a voltage barrier Particles bound in a potential well Simple harmonic oscillator (algebraic manipulation(Student understanding of the lesson	3	Seventh and eighth
Daily and monthly tests	Teaching method	the theoretical side Simple harmonic oscillator (analytical treatment(Calculations of expected values	Student understanding of the lesson	3	The ninth and tenth
Daily and monthly tests	Theoretic al	the theoretical side Matrix formulation for quantum mechanics Momentum and position matrix	Student understanding of the lesson	3	Eleventh And the twelfth
Daily and monthly tests	Theoretic al	Second semester exam	Student understanding of the lesson	3	Thirteent h
Daily and monthly tests	Theoretic al	the theoretical side The Hamiltonian matrix of the simple oscillator Pure matrix	Student understanding of the lesson	3	fourteent h And the fifteenth

		treatment of the simple harmonic oscillator			
10. Course str	ructure				_
Week	Hours	Required learning outcomes	Name of the unit/topic	Evaluation method	Teaching method
the first And the second And the third	3	Student understanding of the lesson	the theoretical side Concepts of quantum mechanics Wave mechanics Probability	Daily and monthly tests	Theoretica l
Fourth fifth And the sixth	3	Student understanding of the lesson	the theoretical side Calibration and current density Schrödinger equation with applications	Daily and monthly tests	Theoretica 1
Seventh and eighth	3	Student understanding of the lesson	Semester exam the theoretical side Serious at a voltage barrier Particles bound in a potential well Simple harmonic oscillator (algebraic manipulation(Daily and monthly tests	Theoretica 1
The ninth and tenth	3	Student understanding of the lesson	the theoretical side Simple harmonic oscillator (analytical treatment(Calculations of expected values	Daily and monthly tests	Teaching method
Eleventh And the twelfth	3	Student understanding of the lesson	the theoretical side Matrix formulation for quantum mechanics Momentum and position matrix	Daily and monthly tests	Theoretica 1

Thirteenth	3	Student understanding of the lesson	Second semester exam	Daily and monthly tests	Theoretica 1
fourteenth And the fifteenth	3	Student understanding of the lesson	the theoretical side The Hamiltonian matrix of the simple oscillator Pure matrix treatment of the simple harmonic oscillator	Daily and monthly tests	Theoretica 1

Second level: Analytical Mechanics, Phy 201

Course description form

Course description

Analytical mechanics is a subfield of mathematical physics that uses analytical techniques, particularly calculus of variations, to solve problems in mechanics. As a result, instead of solving equations in vector quantities, they include solutions of differential equations in scalar quantities.

1. Educational institution	University of Basrah- College of Science
2. Scientific department/center	Physics
3. Course name/code	Analytical Mechanics,Phy 201
4. Programs in which it is included	Bachelor's, Master's, Doctorate
5. Available attendance forms	Weekly
6. Semester/year	2020-2021
7.Number of study hours (total)	60credit hours
8.Date this description was prepared	2020-9-1

1. Course objectives

The course aims to introduce students to the motion of dynamical systems that are typically described in terms of two fundamental quantities: scalars and vectors. The vector is the position vector r of a moving particle and the parameter is time t, the derivative of r with respect to t is called velocity v, the time derivative of velocity is called acceleration a. Isaac Newton's three fundamental laws of motion describe a damped harmonic oscillator. Explain the movement of charged particles in electric and magnetic fields. Newton formally announced the law of universal gravitation in his Principia . To prove Kepler's first law, the differential equation of the particle's orbit in any available central force field. Explain the center of mass and linear momentum of the system. I decided to use it as the basic Lagrange equations and Hamiltonian equations. Rotation of a rigid body about an arbitrary axis: moments and products of angular momentum, inertia, and kinetic energy.

11. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

Introduce students to the motion of dynamical systems that are typically described in terms of two basic quantities: scalars and vectors.

The student introduces Newton's three basic laws of motion, a damped harmonic oscillator.

Explain the movement of charged particles in electric and magnetic fields.

Prove Kepler's first law, the differential equation of the orbit of a particle in any central force field

B - The skills objectives of the course.

B1 - Reasoning to describe dynamic systems and explain the movement of particles using basic theories and hypotheses

Teaching and learning methods

1-Theoretical lectures and discussions

) 2-Using educational means (scientific presentations and films

Evaluation methods

- 1-Daily tests
- 2-Monthly tests
- 3-Final exams

C- Emotional and value goals

- C1- The ability to communicate information after presenting it, discussing it, and interpreting it
- C2- Linking the given information to applied models

Teaching and learning methods

- 1-Explanation and direct delivery of lectures
- 2-Powerpoint presentation and screen

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3-Final exams
- D Transferable general and qualifying skills (other skills related to employability and personal development).
- D1- Developing the student's mental abilities
 - D2 Understanding dynamic systems and their evolution.

10. Infrastructure	
	1- Required prescribed books
2- Main references (sources)	1] Analytical Mechanics, 7ed, by G. Fowles & G. Cassiday [2] Theoretical Physics 2 (Analytical Mechanics), by Wolfgang Nolting
A-Recommended books and references (scientific journals, reports),	
B - Electronic references, Internet sites	

10. Course	structure
------------	-----------

We ek	Hours	Required learning outcomes	Name of unit/or subject	theoretical	Evaluation method
the first And the second The thir d	2Theoretical	Student understanding of the lesson	Lagrange mechanics + coordinates to determine + Lagrange equations of motion for conservative systems	theoretical	daily and monthly tests
Fourth fifth And the sixt	2Theoretical	Student understanding of the lesson	Constraint forces: Lagrange factorials +D'Alembert's principle: generalized force Potential energy and balance: stability	theoretical	daily and monthly tests
Sev enth and eigh th	2Theoretical	Student understanding of the lesson	Semester exam the theoretical side Coupled harmonic oscillators: normal coordinates	theoretical	daily and monthly tests
The nint h and tent h	2Theoretical	Student understanding of the lesson	Vibration of continuous systems: the wave equation Introduction: Center of mass and linear momentum of a system.	theoretical	daily and monthly tests
elev enth And the twel	2Theoretical	Student understanding of the lesson	Collisions +The anniversary of the founding of the Iraqi army	theoretical	daily and monthly tests
Thir teen th	2Theoretical	Student understanding of the lesson	Second semester exam	theoretical	daily and monthly tests
four teen th And the fifte	2Theoretical	Student understanding of the lesson	Center of mass of a rigid body + rotation of a rigid body about a fixed axis: moment of inertia	theoretical	daily and monthly tests

enth			

11- Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Second level: Electricity and Magnetism, Ph203

Course description form

Course description

The course description focuses on magnetic fields and their relationship to electric fields.

Calculating the magnetic fields arising from direct electric current and their applications in circuits through the Biot-Svart law and studying magnetic induction extensively.

Studying transient currents in circuits (resistance-amplitude) and resistance-inductance-amplitude circuits and knowing the states of growth and decay of current in them.

1. Educational institution	University of Basrah- College of Science
2. Scientific department/center	Physics
3. Course name/code	Electricity and Magnetism, Ph203
4. Programs in which it is included	Bachelor's, Master's, Doctorate
5. Available attendance forms	Weekly

6. Semester/year	2020-2021
7.Number of study hours (total)	60credit hours
9.Date this description was prepared	2020-9-1

10.Course objectives

- 1-The course focuses on magnetic fields and their relationship to electric fields, where methods for detecting magnetic fields and the movement of electrically charged charges and objects within magnetic fields are studied, and thus calculating the magnetic flux and magnetic force that arise due to this movement.
- 2-Calculating the magnetic fields generated by direct electric current and their applications in circuits through Biot-Svart's Law and Ampere's Law.
- 3-Studying magnetic induction extensively through Faraday's law and Lenz's law, supported by applications to know the induced electromotive force and the induced electric current as a result of the movement of a source-free circuit within a magnetic field or the passage of a magnetic field that interrupts this circuit.
- 4-Studying transient currents in (resistance-amplitude) and (resistance4inductance-amplitude) circuits and knowing the states of current growth and decay in them.

11. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

Calculating the magnetic fields arising from direct electric current and their applications in circuits through the Biot-Svart law and studying magnetic induction extensively.

Studying transient currents in circuits (resistance-amplitude) and resistance-inductance-amplitude circuits and knowing the states of growth and decay of current in them.

B - The skills objectives of the course.

1-Reasoning about the calculation of magnetic fields arising from direct electric current and their applications to circuits through the Biot-Svart law and Ampere's law, magnetic induction and transient currents in electronic rotors.

Teaching and learning methods

- 1-Theoretical lectures and discussions
-) 2-Using educational means (scientific presentations and films

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3-Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it.
- C2- Linking theoretical information to the practical part and experimenting with it.

Teaching and learning methods

- 1-Explanation and direct delivery of theoretical and practical lectures.
- 2-Powerpoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3-Final exams
- D Transferable general and qualifying skills (other skills related to employability and personal development),
- 1-Developing the student's mental abilities
 - 2-Understanding electric and magnetic fields in order to apply them

10. Co	ourse structu	re				
Week	Hours	Required learning outcomes		Name of unit/or subject	Teaching method	Evaluation method
the first And the second The third is	3th + 3p every week	Student understandi of the lesso	_	the magnetic field	theoretical + practical	daily and monthly tests
Fourth fifth And the sixth	3th + 3p every week	Student understandi of the lesso	_	Magnetic field of direct current electric current	theoretical + practical	daily and monthly tests
Seventh and eighth	3th + 3p every week	Student understandi of the lesso	_	Electromagnetic induction	theoretical + practical	daily and monthly tests
The ninth and tenth	3th + 3p every week	Student understanding of the lesson		Electromagnetic induction	theoretical + practical	daily and monthly tests
l eleventh And the twelfth	3th + 3p every week	Student understanding of the lesson		Electromagnetic induction	theoretical + practical	daily and monthly tests
Thirteenth	3th + 3p every week	Student understanding of the lesson		Second semester exam	theoretical + practical	daily and monthly tests
fourteenth And the fifteenth	3th + 3p every week	Student understanding of the lesson		Transient current circuits	theoretical + practical	daily and monthly tests
10. Inf	rastructure					
			1- Required prescribed books			
2- Main references (sources)			Abdu Fund Abde	dations of Electricity and Mal Razzaq Al-Rashed Dr. Na lamentals of Electricity and el Hamid.	zim Hassoun Magnetism,(2	Al-Attar) Yahya
A-Recommended books and references (scientific journals, reports),			•			
B - Electronic references, Internet sites						

11- Course development plan Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods. Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences				
-				

Level 2 Physical Optics Ph204

Course description form

Course description

Teaching students the Teaching students the principles, theoretical foundations, and practical applications of physical optics related to wave motion and wave superposition, then the phenomena of interference, diffraction, and polarization of light.

1.Educational institution	University of Basra - College of Science
Scientific department /center	Physics
3. Course name/code	Physical Optics P204
4.Programs in which it is included	Bachelor's, Master's, Doctorate
5.Available attendance forms	weekly
6.Semester/year	2020-2021
)7.Number of study hours (total	60 credit hours
8.Date this description was prepared	2020-9-1

2. 9. Course objective

Teaching students the principles, theoretical foundations, and practical applications of physical optics related to wave motion and wave superposition, then the phenomena of interference, diffraction, and polarization of light.

Course outcomes and teachin, learning and evaluation methods

A- Cognitive objectives

.The student's introduction to the optical phenomena of interference, diffraction, and polarization of light

Knowledge of the principles, theoretical foundations and practical applications of physical optics related to wave motion and wave superposition

B - The skills objectives of the course .

B1-Acquiring the skill of comparing visual phenomena-

Teaching and learning methods

- 1. Theoretical lectures and discussions
- 2. Using educational tools (presentations and scientific films)

Evaluation methods

- .1.Daily tests and laboratory reports
- 2.Monthly test
- 3. Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it
- C2- Linking information to the environmental reality and the Earth's system and the extent of its impact on different organisms

Teaching and learning methods

1.Explanation and direct delivery of lectures

Presentation 2.Powerpoint and screen

Evaluation methods

- 1.Daily tests and laboratory reports
- 2.Monthly tests
- 3. Final exams

D.General and qualifying transferable other skills related to employability and personal development skills (other skills related to employability and personal development)

D1- Developing the student's mental abilities

Development and practical applications of physical optics related to wave motion and wave superposition

10. Cours	se structure				
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	hours	the week
Daily and monthly tests	Theoretic al + practical	Wave equation Wave equation and principle of superposition of waves Principle of superposition of waves	Student understanding of the lesson	3 N + 3 D every week	the first And the second And the third
Daily and monthly tests	Theoretic al + practical	Light interference Wave front splitters	Student understanding of the lesson	3N + 3 D every week	Fourth fifth And the sixth
Daily and monthly tests	Theoretic al + practical	Wave amplitude splitters Multiple packet interference	Student understanding of the lesson	3N + 3 D every week	Seventh and eighth
Daily and monthly tests	Theoretic al + practical	diffraction Fraunhofer diffraction	Student understanding of the lesson	3N + 3 D every week	The ninth and tenth
Daily and monthly tests	Theoretic al + practical	Fresnel diffraction polarization	Student understanding of the lesson	3N + 3 D every week	eleventh And the twelfth
Daily and monthly tests	Theoretic al + practical	Second semester exam	Student understanding of the lesson	3N + 3 D every week	Thirteent h
Daily and monthly tests	Theoretic al + practical	Polarization methods + Mathematical representation of polarized light and polarizers	Student understanding of the lesson	3N + 3 D every week	fourteent h And the fifteenth

11. Infrastructure	
	-1Required prescribed books
[1] Introduction to Optics, <i>FJ Pedrotti</i> , <i>LM Pedrotti</i> and <i>LS Pedrotti</i> , 3rd ^{ed} ., 2007.	-2Main references (sources(
[2] Optics, Eugene Hecht, 5th ed., 2017.	
ed., 2010. (Translated by: Dr. Muhammad Abdel Hamid Darwish + Dr. Ali Abdel Hamid Darwish)	
[3] FUNDAMENTAL OF OPTICS, Francis A. JENKINS and Harvey E. WHITE, 4th ed., 2001. Part, 2 (Translated by: Dr. Abdel Fattah Al-Shazly + Dr. Saeed Al-Jaziri)	
	Recommended books and references (scientific journals, reports(,
	B - Electronic references, Internet sites

12. Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiencesok

second Level Fundamentals of Electronics PH 208 Course Description Model Course Description

Introduction to semiconductor materials, their types, and their applications in electronic circuits. Introduction to some applications of semiconductor materials, which is the bipolar diode, its specifications, applications, and types, such as the Zener diode, the solar cell diode, and the light-emitting diode. Analysis of bipolar diode circuits and identification of its current-voltage characteristic. Also, studying the bipolar junction transistor in terms of its connection to electronic circuits, its applications, types, and uses.

1-educational institution	University of Basra- College of Science
2- the scientific section/center	Physics
3-name/code of the course	Fundamentals of Electronics
4- the programs that it enters into	bachelor's, master's and doctorate degree
5- available attendance forms	weekly
6-year	2021-2020
7- number of study hours	60 hours
8- date of description	1/9/2020
9- course objectives	

Study of semiconductor diodes and their types and applications, and study of bipolar junction transistors and their types, how they work, and their applications in electronic circuits..

10- Learning outcomes, teaching and learning methods, and assessment

- **a-** cognitive goals
- introduction to Basic Electronic Components for Students
- Definition of a Crystal Diode and Its Type
- -Study of the Applications of Crystal Diodes
- -Study of Bipolar Junction Transistors and Their Types
- -How Transistors Work and Their Applications in Electronic Circuits

b- Specific Course Skills Objectives

- **1-** Acquiring the skill of practical application of theoretical knowledge in the laboratory to create electronic circuits."
- 2- Inference of the types of crystalline diodes and transistors and the difference between their types

Methods of Teaching and Learning

- **1-** Theoretical lectures and discussions
- **2-** Use of educational materials (presentations and scientific films)

Methods of assessment

- **1-** Daily tests and laboratory reports
- **2-** Monthly tests
- **3-** Final exams
- **c-** Affective and value goals
- 1- The ability to convey information after presenting, discussing, and interpreting it

Methods of Teaching and Learning

- 1-Direct explanation and delivery of lectures
- 2-Presentation power point and screen
- d-General and transferable skills (other skills related to employability and personal development
- 1- developing the student's mental abilities)

11-course structure							
week	hours	required learning outcomes	the name of the unit	Method of education	Method of evaluation		
First ,second and third	3th+3pa every week	student's understanding of the lesson	Ch1:Crystal structure of atomic models, Chemical bonds, Theory of energy bands of pure	theoretical	daily and monthly tests		

			semiconductor crystals, n-type crystal, p-type crystal, Density of states, Concentration of charge carriers, Current density		
Fourth,fifth and sixth	3th+3pa every week	student's understanding of the lesson	Ch2:Junctions, Types of junctions, Metal- semiconductor junction, Schottky diode. Junctions(n-type semiconductor, p- type semiconductor)	theoretical	daily and monthly tests
the seventh and eighth	3th+3pa every week	student's understanding of the lesson	Ch3:A diode is a semiconductor device that allows current to flow in one direction only. The current-voltage characteristic of a diode is a graph that shows the relationship between the current flowing through the diode and the voltage applied to it. ,The control of the depletion region width of a diode is a technique used to adjust the electrical properties of the diode. ,The analysis of electrical circuits for a diode is the	theoretical	daily and monthly tests

			process of determining the current and voltage in a circuit that contains a diode.		
ninth and tenth	3th+3pa every week	student's understanding of the lesson	Ch3: Crystal diode zener diode Ch4: Applications of the Bipolar Junction Transistor. Tuning and Filter Circuits	theoretical	daily and monthly tests
eleventh and twelfth	3th+3pa every week	student's understanding of the lesson	Ch4: Applications of the semiconductor diode. Peak clipping circuits, Logic circuits, Solar cells, Light-emitting diodes	theoretical	daily and monthly tests
the thirteenth	3th+3pa every week	student's understanding of the lesson	second semester exam	theoretical	daily and monthly tests
fourteenth and fifteenth	3th+3pa every week	student's understanding of the lesson	Ch4: Bipolar junction transistor, How a BJT works, PNP transistor characteristics, Emitter circuit. NPN transistor characteristics, Common emitter circuit for NPN transistor, Common emitter circuit for PNP transistor	theoretical	daily and monthly tests

12- infrastructure	
1- required textbooks	
2- references	1-Principles of Electronics by Malvino
	2-semiconductor devices, physics and
	technology.S.M.SZE
a- Recommended books and references	
(scientific journals, reports)	
b-Books and references recommended	
(electronic references, websites)	

13- course development plan

Communication in curriculum development based on the latest releases of books and references, the adoption of modern interactive education tools, and the activation of twinning programs with international universities to learn about modern curricula and teaching methods and exchange experiences

Level two Thermodynamic V212

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1. Educational Institution	University of Basrah - College of		
	Science		
2. Scientific Department/ Center	Physics		
3.Name/code of the course	Thermodynamic V212		
4. Programs that include	bachelor's degree		
5. Attendance forms available	Weekly		
6. Semester/year	2020-2021		
7. The total number of study hours credit	45 credit hours		
8. The date this description was prepared	1-9-2020		

9. Course objectives

It is interested in the study of energy and its transformations, as well as the study of the analysis of the properties of a substance that is affected by temperature change.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives
☐ Introduce the student to thermodynamics and thermodynamic processes.
B - The skills objectives of the course B1 - Acquire the skill of knowledge of thermodynamic processes.
Teaching and learning methods
1.Future lectures and discussions
2.Using educational means (scientific presentations and films)
Evaluation methods
1-Daily tests and laboratory reports
2-Monthly tests
3- Final exams
C- Emotional and value objectives
C1- The ability to convey information after presenting it, discussing it, and interpreting it
Teaching and learning methods
1-Direct explanation and delivery of lectures.
2- Power point presentation and screen.
Evolvetion methods
Evaluation methods
1 Delle teste en dishausta manuala
1-Daily tests and laboratory reports

D - Transfera	ble general and qualifying skills (other skills related to employability and personal
development) D1- De	eveloping the student's mental abilities

Evaluation	Teaching method	Name of the unit/topic	Required learning	Hours	Week
method			outcomes		
Daily and monthly	Theoretic al	Theoretical aspect Chapter One / Basic	Student understanding of	3	the first
tests		Concepts in Thermodynamics Chapter Two / Temperature	the lesson		second And the third
		(Temperature - Temperature Scales - Triple Point of			
Daily and	Theoretic	Water(Theoretical aspect	Student	3	Fourth
monthly tests	al	Chapter Three: Methods of Heat	understanding of the lesson		fifth And the
		Transfer 3.1Specific heat (specific heat			sixth
		capacity(3.2Latent heat 3.3Heat transfer by			
		conduction 3.4Heat transfer by			
		convection 3.5Heat transfer by radiation			
		3.6Teuton's law of refrigeration			
		Chapter Four: Case Equation 4.1Introduction			
		4.2Equation of the case empirically 4.3Qualities of an			
		ideal gas 4.5Laws of gases			
		4.6State equation for real gases			
Daily and monthly	Theoretic al	Semester Exam Theoretical aspect	Student understanding of the lesson	3	Seventh and
tests		Solution of Chapter II and III problems First, second and	the lesson		eighth

		third semester exam			
Daily and monthly tests	Theoretic	Theoretical aspect Chapter Five: Work 5.1Introduction 5.2Thermodynamic process -1Reversible operations -2Non-reversible operations -3Isothermal processes 5.3Calculation of work in thermodynamics 5.4Solving the workpiece equation 5.5Dependence of the workpiece on the	Student understanding of the lesson	3	The ninth and tenth
Daily and	Theoretic	course of the process Work in thermodynamic processes of ideal gas -1Isothermal reversible process Theoretical aspect	Student	3	Eleventh
monthly tests	al	-2Isothermal reversible process with constant pressure -3Fixed size isothermal reversible process -4Free Stretching Process 5.7Volumetric expansion coefficients and regression 5.8Work in terms of volumetric expansion coefficient and refractive index 5.9Workpiece for solids and liquids 5.10Case Equation for Non-Gaseous Substances 5.11Perfect and	understanding of the lesson		And the twelfth

		Incomplete Differentiation				
Daily and monthly tests	theoretica 1	Second Semester Exam	Studer unders the les	standing of	3	Thirteent h
Daily and monthly tests	theoretica	Theoretical aspect Chapter Six: The First Law of Thermodynamics 6.1Introduction 6.2Formula of the first law in thermodynamics for ideal gas -1The first law of the isoparic process (changes in the amount of heat under constant pressure(-2The first law of the isometric process (changes in the amount of heat under a constant volume(-3The first law of the isothermic process (changes in the amount of heat under a constant tolume(-3The first law of the isothermic process (changes in the amount of heat under a constant temperature(6.3Specific heat capacity (C	Studer unders the les	standing of	3	fourteent h And the fifteenth
10.	•		•			
				1- Required pr	escribed bool	ks
Thermodynar	mics			2- Main refere	nces (sources	3)
				A- Recommen	ided books an	ıd

references (scientific journals,

reports(...,

B - Electronic references, Internet
sites

10. Course development plan

Communicating in developing the curriculum based on recent versions of books and references Adopting modern interactive teaching methods

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

10. Course development plan

Communicating in developing the curriculum based on recent versions of books and references Adopting modern interactive teaching methods

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Second level: Geophysics, V227

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

	T
1. F 10. Course outcomes and teaching, learning and evaluation	on methods
A- Cognitive objectives	
*Introducing the student to an introduction to the Earth's p	hysical components, Earth's
atmosphere and layers, and the formation of the Earth's surf	ace
* Introducing the student to the geophysical processes that o	occur in the interior of the Earth and
their effects on the Earth's surface	
* Introducing the student to the most important safety condi-	tions and the initial procedures
followed when natural disasters occur	
6. SB - The skills objectives of the course B1 - Acquire the skill of diagnosing geological risks B2 - Inferring methods of safety and protection of the 7. The safety and prevention procedures followed during disa	•
	1-9-2020
Teaching and learning methods	
1.Future lectures and discussions 2.Using educational means (scientific presentations and film	as)
Evaluation methods	
1-Daily tests and laboratory reports	

2-Monthly tests
3- Final exams
C- Emotional and value objectives
C1- The ability to convey information after presenting it, discussing it, and interpreting it
C2- Linking information to the environmental reality, the Earth system, and the extent of its
impact on various living organisms
Teaching and learning methods
1-Direct explanation and delivery of lectures.
2- Power point presentation and screen.
Evaluation methods
1-Daily tests and laboratory reports
2-Monthly tests
3- Final exams
D - Transferable general and qualifying skills (other skills related to employability and personal
development).
D1- Developing the student's mental abilities
D2 Understanding subsurface and subsurface physical geological processes
Identify geological risks and their impact on the biosphere

П

Evaluation method	Teaching method	Name of the		hours	Week
method	memou	unit/topic	Required learning		
memou			outcomes		
			outcomes		
Daily and monthly	Theoretica 1	the theoretical side	Student understanding of the lesson	2	the first And the
tests	1		of the lesson		second
		Chapter 1			And the third
		Introduction to the			
		interior of the Earth			
		and its main parts and			
		components			
		Thermodynamic			
		theory			
		Chapter 2:			
		Geophysical methods			
		in geology, seismic			
		methods			
Daily and monthly tests	Theoretica 1	the theoretical side Primary waves, secondary waves, and Rayleigh-Wolf	Student understanding of the lesson	2	Fourth fifth And the sixth
		waves The basic principles of wave travel,			
		stress and ductility, elastic constants and their relationship with the speed of			
		elastic waves. Semester exam			
Daily and monthly	Theoretica 1	the theoretical side Principles of	Student understanding of the lesson	2	Seventh and eighth

		of earthquakes Propagation of seismic waves between different layers, reflection method and refraction method			
Daily and monthly tests	Theoretica 1	the theoretical side Chapter 3: The attractive method Chapter 4: The electrical method	Student understanding of the lesson	2	The ninth and tenth
Daily and monthly tests	Theoretica 1	the theoretical side discussion Chapter 5: Magnetic method	Student understanding of the lesson	2	Eleventh And the twelfth
Daily and monthly tests	theoretical	Second semester exam	Student understanding of the lesson	2	Thirteenth fourteenth And the fifteenth
Daily and monthly tests	theoretical	the theoretical side Review and discuss	Student understanding of the lesson	2	Fourteenth

10. Infrastructure	
	1- Required prescribed books
1- Hamblin, W.K, Ghrstiansen, E,H, 1998, (Earth Dynamic System). Prentic Hall, New jersey, Eight Edition. 2- John Milson, 2003, Field Gophysics, John wiley and sons, third Edition. 3- El-Arabi ,H, Shendi, 2007, Introduction of geophysics,	2- Main references (sources)
4- Boris Khesin, 2005, PHYSICAL METHODS AND APPROACHES IN ENVIRONMENTAL STUDIES	
	A- Recommended books and references (scientific journals, reports(,

B - Electronic references, Internet
sites

10. Course development plan

Communicating in developing the curriculum based on recent versions of books and references Adopting modern interactive teaching methods

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level Three: Quantum Mechanics, P301

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1. Educational Institution	University of Basrah - College of
	Science
2. Scientific Department/ Center	Physics
3.Name/code of the course	Quantum Mechanics P301
4. Programs that include	bachelor's ,Master's
5. Attendance forms available	Weekly
6. Semester/year	2020-2021
7. The total number of study hours credit	45 credit hours
8. The date this description was prepared	1-9-2020

9. Course objectives

The course in 301 aims to provide the student with an understanding of the group of physical theories that appeared in the twentieth century to explain phenomena at the atomic level or below. These theories combined the particle property and the wave property to reveal the term wave-particle duality. Thus, the responsibility of quantum mechanics becomes the physical interpretation at the atomic level.

	10. Course outcomes and teaching, learning and evaluation methods
✓ - ✓ - e	itive objectives Introducing the student to the basics of quantum mechanics Introducing the student to the time-dependent and non-time-dependent Schrodenker quation Study of the wave function
B - T	the skills objectives of the course
B1 - Cal	culations of expected values.
B2 - Mat	rix formulation for quantum mechanics
Teaching	g and learning methods
	lectures and discussions educational means (scientific presentations and films)
Evaluatio	on methods
1-Daily t	ests and laboratory reports
2-Month	ly tests
3- Final	exams
C- Emot	ional and value objectives
	ability to convey information after presenting it, discussing it, and interpreting it
	g and learning methods

1-D	Direct explanation and delivery of lectures.
2- I	Power point presentation and screen.
Eva	aluation methods
1-D	Daily tests and laboratory reports
2-N	Monthly tests
3- I	Final exams
D -	Transferable general and qualifying skills (other skills related to employability and personal
dev	relopment).
D1-	- Developing the student's mental abilities
D2	Understanding subsurface and subsurface physical geological processes
Ide	ntify geological risks and their impact on the biosphere
D3	The identification of microorganisms and their effects is still over

10. Course st	ructure				
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	Hours	Week
Daily and monthly tests	Theoretic al	the theoretical side Concepts of quantum mechanics Wave mechanics Probability	Student understanding of the lesson	3	the first And the second And the third
Daily and monthly tests	Theoretic al	the theoretical side Calibration and current density Schrödinger equation with applications	Student understanding of the lesson	3	Fourth fifth And the sixth
Daily and monthly tests	Theoretic al	Semester exam the theoretical side Serious at a voltage barrier Particles bound in a potential well Simple harmonic oscillator (algebraic manipulation(Student understanding of the lesson	3	Seventh and eighth
Daily and monthly tests	Teaching method	the theoretical side Simple harmonic oscillator (analytical treatment(Calculations of expected values	Student understanding of the lesson	3	The ninth and tenth
Daily and monthly tests	Theoretic al	the theoretical side Matrix formulation for quantum mechanics Momentum and position matrix	Student understanding of the lesson	3	Eleventh And the twelfth
Daily and monthly tests	Theoretic al	Second semester exam	Student understanding of the lesson	3	Thirteent h
Daily and monthly tests	Theoretic al	the theoretical side The Hamiltonian matrix of the simple oscillator Pure matrix	Student understanding of the lesson	3	fourteent h And the fifteenth

		treatment of the simple harmonic oscillator			
10. Course str	ructure				_
Week	Hours	Required learning outcomes	Name of the unit/topic	Evaluation method	Teaching method
the first And the second And the third	3	Student understanding of the lesson	the theoretical side Concepts of quantum mechanics Wave mechanics Probability	Daily and monthly tests	Theoretica 1
Fourth fifth And the sixth	3	Student understanding of the lesson	the theoretical side Calibration and current density Schrödinger equation with applications	Daily and monthly tests	Theoretica 1
Seventh and eighth	3	Student understanding of the lesson	Semester exam the theoretical side Serious at a voltage barrier Particles bound in a potential well Simple harmonic oscillator (algebraic manipulation(Daily and monthly tests	Theoretica 1
The ninth and tenth	3	Student understanding of the lesson	the theoretical side Simple harmonic oscillator (analytical treatment(Calculations of expected values	Daily and monthly tests	Teaching method
Eleventh And the twelfth	3	Student understanding of the lesson	the theoretical side Matrix formulation for quantum mechanics Momentum and position matrix	Daily and monthly tests	Theoretica 1

Thirteenth fourteenth And the fifteenth	3	Student understanding of the lesson Student understanding of the lesson	the t The matrix simp Pure treatsimp	ond semester cheoretical side Hamiltonian rix of the ole oscillator e matrix tment of the ole harmonic llator	Daily and monthly tests Daily and monthly tests	Theoretica l Theoretica l
10. Infrastruc	ture					
1- Required p	rescribed bo	oks				
2- Main refere	ences (sourc	es)		[1] Introduction	n to Quantum	l
				Mechanics by I	David Kervith	n
				[2] Introduction	n to Quantum	l
			Mechanics by I	Or. Hashem A	Abboud	
			and Dr. Diaa A	l-Mukhtar in	Arabic	
			[3] Fundamenta	als of Quantu	m	
				Mechanics by I	Robert White	

10. Course development plan

Communicating in developing the curriculum based on recent versions of books and references Adopting modern interactive teaching methods
Activating twinning programs with international universities to learn about modern teaching

curricula and methods and exchange experiences

Third Level atomic physics PH 307 Course Description Model Course Description

This course description provides a concise summary of the course's key features and the learning outcomes that students are expected to achieve, demonstrating whether they have made the most of the learning opportunities available. It is necessary to link them to the program description.

1-educational institution	University of Basra- College of Science			
2-the scientific section/center	Physics			
3-name/code of the course	atomic physics ph307			
4- the programs that it enters into	bachelor's			
5- available attendance forms	weekly			
6-year	2021-2020			
7- number of study hours 60 hours				
8- date of description 1/9/2020				
9- course objectives				
the student's ability to understand the different types of atomic interactions				

10- Learning outcomes, teaching and learning methods, and assessment

- **a-** cognitive goals
- Introduction to quantum numbers in atomic structure
- Hund's rule
- Zeeman effect
- **b- Specific Course Skills Objectives**

acquiring the skill of diagnosing atomic spectra

Methods of Teaching and Learning

- **1-** Theoretical lectures and discussions
- **2-** Use of educational materials (presentations and scientific films)

Methods of assessment

- **1-** Daily tests and laboratory reports
- **2-** Monthly tests
- **3-** Final exams
- **c-** Affective and value goals

1- The ability to convey information after presenting, discussing, and interpreting it

Methods of Teaching and Learning

- 1-Direct explanation and delivery of lectures
- 2-Presentation power point and screen

d-General and transferable skills (other skills related to employability and personal development

1- developing the student's mental abilities)

11-course stru	11-course structure				
week	hours	required learning outcomes			Method of evaluation
First ,second and third	3th+1pa	student's understanding of the lesson	Theoretical aspect: Atomic spectra Bohr's theory Quantization of the hydrogen atom	theoretical	daily and monthly tests
Fourth,fifth and sixth	3th+1pa	student's understanding of the lesson	Theoretical aspect: Principle of complementarily, Semester exam, quantitative numbers in atomic structure	theoretical	daily and monthly tests
the seventh and eighth	3th+1pa	student's understanding of the lesson	Theoretical aspect: Pauli exclusion principle, Hund's rule	theoretical	daily and monthly tests
ninth and tenth	3th+1pa	student's understanding of the lesson	Semester exam, Theoretical aspect: Orbital and spin dipole moment of an	theoretical	daily and monthly tests

			electron		
eleventh and twelfth	3th+1pa	student's understanding of the lesson	Theoretical aspect: spin-orbit interaction selection rules	theoretical	daily and monthly tests
the thirteenth	3th+1pa	student's understanding of the lesson	Second semester exam	theoretical	daily and monthly tests
fourteenth and fifteenth	3th+1pa	student's understanding of the lesson	Theoretical aspect: zeeman effect,t stark effect	theoretical	daily and monthly tests

12- infrastructure	
1- required textbooks	
2- references	atomic physics-talib nahi alkhafaje
	modern physics-munem mashkor
a- Recommended books and references	
(scientific journals, reports)	
b-Books and references recommended	
(electronic references, websites)	

13- course development plan

Communication in curriculum development based on the latest releases of books and references, the adoption of modern interactive education tools, and the activation of twinning programs with international universities to learn about modern curricula and teaching methods and exchange experiences

Forth Level Quantum mechanics PH 401 Course Description Model Course Description

This course description provides a concise summary of the course's key features and the learning outcomes that students are expected to achieve, demonstrating whether they have made the most of the learning opportunities available. It is necessary to link them to the program description.

	77.1 1 25 6.11 26.1
1- educational institution	University of Basra- College of Science
2-the scientific section/center	Physics
3-name/code of the course	Principles of Electricity and
	Magnetism
4- the programs that it enters into	bachelor's ,master's degree
5- available attendance forms	weekly
6-year	2021-2020
7- number of study hours	60 hours
8- date of description	1/9/2020
0 1' '	·

9- course objectives

The course is designed for fourth-year students and includes four chapters. Chapter 1 is dedicated to the study of quantum mechanics in three dimensions, and includes a detailed study of angular momentum and orbital angular momentum (spin). Chapter 2 provides an in-depth study of time-independent perturbation theory, with examples of calculating the energy and wave functions of bound and unbound states. Chapter 4 explains the semiclassical approximation, also known as the WKB approximation, and provides a study of the classical region and an explanation of the quantum tunneling phenomenon.

10- Learning outcomes, teaching and learning methods, and assessment

a- cognitive goals

Definition of quantum mechanics in three dimensions

Definition of Schrödinger equation in spherical coordinates

Definition of hydrogen atom

- **b- Specific Course Skills Objectives**
- 1- Acquiring the skill of knowing the details of electricity and magnetism
- 2- The study of Coulomb's law is extremely important because it provides

information about static electricity, how to calculate electrostatic force, and how to determine the resultant of these forces.

Methods of Teaching and Learning

- **1-** Theoretical lectures and discussions
- **2-** Use of educational materials (presentations and scientific films)

Methods of assessment

- **1-** Daily tests and laboratory reports
- **2-** Monthly tests
- **3-** Final exams
- **c-** Affective and value goals
- **1-** The ability to convey information after presenting, discussing, and interpreting it

Methods of Teaching and Learning

- 1-Direct explanation and delivery of lectures
- 2-Presentation power point and screen
- d-General and transferable skills (other skills related to employability and personal development
- 1- developing the student's mental abilities)

11-course structure						
week	hours	required learning outcomes	the name of the unit	Method of education	Method of evaluation	
First ,second and third	3th	student's understanding of the lesson	Theoretical aspect: 3D quantum mechanics, spherical Schrödinger equation, hydrogen	theoretical	daily and monthly tests	

			atom		
Fourth,fifth and sixth	3th	student's understanding of the lesson	Theoretical aspect: Angular momentum and intrinsic angular momentum (spin)	theoretical	daily and monthly tests
			Time- independent perturbation theory		
			Perturbation theory for non- degenerate levels		
			Stark effect		
the seventh and eighth	3th	student's understanding of the lesson	Term Exam, Theoretical Side, Theory of Perturbations for Degenerate Levels	theoretical	daily and monthly tests
ninth and tenth	3th	student's understanding of the lesson	Theoretical aspect: method of covariance	theoretical	daily and monthly tests
eleventh and twelfth	3th	student's understanding of the lesson	Theoretical aspect: Theory and Applications of the Ground State of the Harmonic Oscillator	theoretical	daily and monthly tests
the thirteenth	3th	student's understanding of the lesson	second semester exam	theoretical	daily and monthly tests
fourteenth and fifteenth	3th	student's understanding of the lesson	Theoretical aspect: Semiclassical approximation and classical	theoretical	daily and monthly tests

	region	
	quantum	
	tunneling	
	connection	
	formulas	

12- infrastructure	
1- required textbooks	
2- references	Introduction to quantum mechanics (second edition) by david J.Griffiths(2005) 2- Introduction to Quantum Mechanics Prof-hashim abood qasim
a- Recommended books and references (scientific journals, reports)	
b-Books and references recommended (electronic references, websites)	

13- course development plan

Communication in curriculum development based on the latest releases of books and references, the adoption of modern interactive education tools, and the activation of twinning programs with international universities to learn about modern curricula and teaching methods and exchange experiences

Fourth level: Statistical Physics, P409 Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1.Educational institution	3. University of Basra - College of Science
Scientific department /center	physics
3. Course name/code	Statistical Physics P409
4.Programs in which it is included	Bachelor's degree, Master's degree
5.Available attendance forms	weekly
6.Semester/year	2020-2021
)7.Number of study hours (total	30 credit hours
8.Date this description was prepared	2020-9-1

4. 9. Course objective

It aims to divide the physical properties into apparent ones that can be measured directly and microscopic ones that can be measured indirectly. These properties are linked to the movement of huge numbers of particles, making it impossible to use equations that describe the detailed movement of particles to calculate them .The task of statistical physics is to calculate apparent properties in terms of microscopic properties without the need to perform detailed calculations of the movement of these particles.

Course outcomes and teachin, learning and evaluation methods

- A- Cognitive objectives
- ✓ Deriving distribution laws for classical and quantitative statistics.

Prove the principle of equal energy distribution and its application in calculating the specific heat of gases

The contribution of electrons to the specific heat of metals.

.Apply the Bose-Einstein distribution to learn about the properties of a superfluid and the behavior of helium, for example, as a superfluid at a temperature less than 2.19 K

- B The skills objectives of the course .
 - .B1 Acquire the skill of applying distribution laws in calculating rates of various physical properties
 - B2- Derivation of the Fermi-Dirac distribution law and identifying the properties of the Fermi function and the fermionic gas
 - B3-Solving the apparent contradiction of compression and deriving a formula for entropy according to the classical objective

Teaching and learning methods

- 1. Theoretical lectures and discussions
- 2. Using educational tools (presentations and scientific films)

Evaluation methods

- 1. Daily tests and laboratory reports
- 2.Monthly test
- 3. Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it
- C2-- Linking information to the environmental reality and the Earth's system and the extent of its impact on different organisms

Teaching and learning methods

1.Explanation and direct delivery of lectures

Presentation 2.Powerpoint and screen

Evaluation methods

- .1.Daily tests and laboratory reports
- 2.Monthly tests
- 3. Final exams
- -D.General and qualifying transferable other skills related to employability and personal development skills (other skills related to employability and personal development)
 - D1- Developing the student's mental abilities
 - D2- Defining virtual and microscopic properties with examples and explaining the necessity of statistical physics
 - D3- Defining bosons and fermions, identifying their properties, and deriving the Bose-Einstein distribution law and the bosonic gas.

13. Cour	se structure				
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	hours	the week
Daily and monthly tests	theoretica 1	the theoretical side introduction Maxwell-Boltzmann distribution (1(Maxwell-Boltzmann distribution (2(Student understanding of the lesson	2 n	the first And the second And the third
Daily and monthly tests	theoretica 1	the theoretical side Quantitative statistics (1(Quantitative statistics (2(Equal distribution of energy	Student understanding of the lesson	2 n	Fourth fifth And the sixth
Daily and monthly tests	theoretica 1	Semester exam the theoretical side Statistical thermodynamics	Student understanding of the lesson	2 n	Seventh and eighth
Daily and monthly tests	theoretica 1	the theoretical side Semi-classical ideal gas Photon gas	Student understanding of the lesson	2 n	The ninth and tenth
Daily and monthly tests	theoretica 1	the theoretical side Phonon gas Electronic gas	Student understanding of the lesson	2 n	eleventh And the twelfth
Daily and monthly tests	theoretica 1	Second semester exam	Student understanding of the lesson	2 n	Thirteent h
Daily and monthly tests	theoretica 1	the theoretical side Ion-thermal emission Bose-Einstein condensation	Student understanding of the lesson	2 n	fourteent h And the fifteenth

14. Infrastructure	
	-1Required prescribed books
1] Introduction to statistical physics for students, A. J. Pointon .	-2Main references (sources(

	Recommended books and references (scientific journals, reports(,
	B - Electronic references, Internet sites
15. Course development plan	

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level 4: Laser Physics, P413 Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1.Educational institution	5. University of Basra - College of				
.Define the definition of laser physics with a description of the basic principles of lasers					
and laser operation. Examples of phenomena th	at will be considered are: interactions of				
atoms with light, various types of spectroscopic	machines, optical saturation, inverse				
3. (counters, optical light pumping, optical resonate	ors and spectrophotometers, and				
oscillation and amplification in lasers. The types	s of lasers specific to the work area are				
—also dealt with. At the end of the course, laser a	pplications will be explained				
4.1 Tograms in which it is included	Dachelot s deglee, whaster s degree				
. 5.Available attendance forms	weekly				
6.credit hours	2020-2021				
)7.Number of study hours (total	45 credit hours				
8.Date this description was prepared	2020-9-1				
6. 9.Course objective					

Course outcomes and teachin, learning and evaluation methods

A- Cognitive objectives

Introducing the student to laser

The basic elements of the laser

Calculating laser level equations at three and four energy levels

B - The skills objectives of the course B1.Explain some commonly used types of lasers Teaching and learning methods 1. Theoretical lectures and discussions 2. Using educational means (scientific presentation and films) **Evaluation methods** 1. Daily tests and laboratory reports 2.Monthly test 3.Final exams C- Emotional and value goals C1- The ability to communicate information after presenting it, discussing it, and interpreting it. Teaching and learning methods 1- Explanation and direct delivery of lectures Presentation 2.Powerpoint and screen **Evaluation methods** 1.Daily tests and laboratory reports 2.Monthly tests 3.Final exams D.General and qualifying transferable other skills related to employability and personal development skills (other skills related to employability and personal development) D1.Developing the student's mental abilities

16. Cour	se structure				
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	hours	the week
Daily and monthly tests	theoretical	the theoretical side The basic elements of a laser Laser beam characteristics The interaction of light with matter	Student understanding of the lesson	3 n	the first And the second An d the thi rd
Daily and monthly tests	theoretical	the theoretical side Explaining the action of laser in a laser system with three and four energy levels laser level equations at three and four energy levels Types of resonators	Student understanding of the lesson	3 n	Fourth fifth And the sixth
Daily and monthly tests	theoretical	Semester exam the theoretical side Laser resonator patterns Ray tracing and ABCD transition matrices for the laser resonator and calculating the stability of the resonator	Student understanding of the lesson	3 n	Seventh and eighth
Daily and monthly tests	theoretical	the theoretical side Calculate the threshold condition for the laser Explain some commonly used types of lasers	Student understanding of the lesson	3 n	The ninth and tenth
Daily and monthly tests	theoretical	the theoretical side Explain some commonly used types of lasers	Student understanding of the lesson	3 n	eleventh And the twelfth
Daily and monthly tests	theoretical	Second semester exam	Student understanding of the lesson	3n	Thirteent h

Daily and	theoretical	the theoretical side	Student	3 n	fourteent
monthly		Some laser applications,	understanding		h
tests		including laser switch	of the lesson		And the
		operation			fifteenth
		Key operation			

17. Infrastructure	
	-1Required prescribed books
1-Laser Electronics, Third Edition , JT Verdeyen 2-Laser Physics, 2010 by Milonni by O. Svelto Principles of Laser, Fifth Edition,) -2Main references (sources
	Recommended books and references (scientific journals, reports),
	B - Electronic references, Internet sites

18. Course development plan

- .Communicating in developing the curriculum based on recent versions of books and references Adopting modern interactive teaching methods.
- .Activating twinning programs with international universities to learn about modern curricula and teaching methods and exchange experiences

Fourth level: Advanced Mathematical Physics, P415

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1.Educational institution	7. University of Basra - College of Science
Scientific department /center	Physics
3. Course name/code	Advanced Mathematical Physics P415
4.Programs in which it is included	Bachelor's, Master's, Doctorate
5.Available attendance forms	weekly
6.Semester/year	2020-2021
)7.Number of study hours (total	30 credit hours
8.Date this description was prepared	2020-9-1
8 0 Course objective	

8. 9. Course objective

Identify the most important special functions (gamma, beta, and error) and use them to, solve a wide range of limited integrals .Solving the Bessel and Legendre differential equations and their applications in problems of potential and electromagnetic fields. Identify Laplace transforms, their inverses, and theorems and use them in solving electrical circuit problem.

19. Course outcomes and teachin, learning and evaluation methods

- A- Cognitive objectives
- ✓ Developing the student's skills in calculating different types of definite integrals using special functions
- ✓ Improving student experiences in solving differential equations
- ✓ Introducing the student to the importance of Laplace transforms in analyzing electrical circuits
- B The skills objectives of the course.
 - B1 Acquiring the skill of solving Legendre's equations and Legendre's manifolds.
 - B2 The ability to solve Laplace's equations

Teaching and learning methods

- 1. Theoretical lectures and discussions
- 2. Using educational means (scientific presentations and films)

Evaluation methods

1.Daily tests and laboratory reports

Monthly tests 2.

- 3. Final exams
- C- Emotional and value goals

The ability to communicate information after presenting it, interpreting it, and discussing it

Teaching and learning methods

1.Direct explanation and delivery of lectures

Presentation 2.Powerpoint and screen

Evaluation methods

- 1. Daily tests and laboratory reports
- 2.Monthly tests
- 3. Final exams
- D General and qualifying transferable other skills related to employability and personal development skills (other skills related to employability and personal development) the student's mental abilities D1- Developing

	20. Cours	se structure			
Evaluation method	Teaching method	Name of the unit/topic	Required learning outcomes	hours	the week
Daily and monthly tests	theoretica 1	the theoretical side Gamma functions and error. Beta functions. Solve the Bessel differential equation.	Student understanding of the lesson	2 n	the first And the second And the third
Daily and monthly tests	theoretica 1	the theoretical side Bessel functions and recurrence relations. Semester exam Solve the Legendre differential equation	Student understanding of the lesson	2 n	Fourth fifth And the sixth
Daily and monthly tests	theoretica 1	the theoretical side Legendre polynomials and the generative function Rodriguez formula and recurrence relations	Student understanding of the lesson	2 n	Seventh and eighth
Daily and monthly tests	theoretica 1	the theoretical side The accompanying Legendre equation Semester exam	Student understanding of the lesson	2 n	The ninth and tenth
Daily and monthly tests	theoretica 1	the theoretical side Laplace transforms Transformation theorems	Student understanding of the lesson	2 n	eleventh And the twelfth
Daily and monthly tests	theoretica 1	Second semester exam	Student understanding of the lesson	2 n	Thirteent h
Daily and monthly tests	theoretica 1	the theoretical side Inverse Laplace transform Solve initial value problems	Student understanding of the lesson	2 n	fourteent h And the fifteenth

21. 12.Infrastructure	
	-1Required prescribed books

-1Methods in Applied Mathematics ,written by Dr. Basil Yacoub Youssef, University of Basra - Iraq, 1989. [2] HJ Weber and GB Arfken , "Essential Mathematical Methods for Physicists", Academic Press, 2003.	-2Main references (sources(
	Recommended books and references (scientific journals, reports(,
	B - Electronic references, Internet sites

22. 13.Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level 4 microwave Phy420 Course description form Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available.

月	h
1. Educational institution	University of Basrah - College of Science
2. Scientific department/center	Physics
3. Course name/code	Microwave Phy420
4. The programs it participates in	Bachelor's
5. Available forms of attendance	weekly
6. Semester/year	2020-2021
7. Number of study hours (total)	30 credit hours
8. Date of description preparing	1-9-2020

9. Course objectives

A study material that describes an important part of the electromagnetic spectrum, which is microwave waves, and shows the methods of generating them and their applications, discussing their types and ways of transferring them from broadcasting devices to receiving devices.

10. Course outcomes and teaching, learning and evaluation methods

- A- Cognitive objectives:
- ✓ Introducing the student to the electromagnetic spectrum and waves.
- ✓ Microwave characteristics and uses of microwaves.
- ✓ Microwave propagation patterns.

B - The skills objectives of the course:

- 1- Analyze the transmission line and solve its equation.
- 2- Solve the wave equation in a circular cross-section waveguide. And study the difference between a circular guide and a rectangular guide.

Teaching and learning methods:

- 1-Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films).

Evaluation methods:

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

C- Emotional and value goals

- C1- The ability to communicate information after presenting it, discussing it, and interpreting it.
- C2- Linking information to the environmental reality and the Earth's system and the extent of its impact on different organisms.

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- PowerPoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

D - Transferable general and qualifying skills (other skills related to employability and personal development). Developing the student's mental abilities.

11. Course structure

Week	Hours	Required learning outcomes	Name of the unit/topic	Teaching method	Evaluation method
1 ^s , 2 nd , 3 rd	2-theoretical	The student's understandin g of the lesson	The theoretical aspect Introduction to the ectromagnetic spectrum and microwaves. Microwave characteristics and uses of microwaves Microwave valves, generators, microwave transmission lines and their types	Theoretical	Daily and monthly tests
4 th , 5 th , 6 th	2-theoretical	The student's understandin g of the lesson	The theoretical aspect Microwave propagation patterns Transmission line analysis, equation solution and study Short circuit transmission line and open circuit transmission line.	Theoretical	Daily and monthly tests
7 th , 8 th	2-theoretical	The student's understandin g of the lesson	Semester exam The theoretical aspect Introduction to waveguides, applications and types of waveguides	Theoretical	Daily and monthly tests
9 th , 10 th	2-theoretical	The student's understandin g of the lesson	The theoretical aspect Rectangular cross- section waveguide and solve its wave equation Solve the wave equation in a circular cross- section waveguide. Study the difference between a circular guide and a rectangular guide.	Theoretical	Daily and monthly tests
11 th , 12 th	2-theoretical	The student's understandin g of the lesson	The theoretical aspect Smith chart	Theoretical	Daily and monthly tests

13 th	2-theoretical	The student's understandin g of the lesson		Second chapter exam	Theoretical	Daily and monthly tests	
14 th , 15 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Pathways of microwaves and propagation of microwaves Fresnel zone and distortion factor	Theoretical		
12. Infr	astructure						
1- Requ	ired prescribed b	ooks					
2- Main references (sources)			2- Found	duction to microwave theor dation for microwave engines mission lines and networks and networks and metworks	neering By R.E.	. Collin	
A - Reco	ommended book	S					
and references (scientific							
journals, reports,)							
B - Electronic references,							
	Internet sites						
	13. Course development plan						
Commu	Communicating in developing the curriculum based on recent versions of books and						

references. Adopting modern interactive teaching methods. Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange

Level 4
Advanced solid-state physics Phy428
Course description form
Course description

experiences

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available.

Π	
1. Educational institution	University of Basrah - College of Science
2. Scientific department/center	Physics
3. Course name/code	Advanced solid-state physics Phy428
4. The programs it participates in	Bachelor's, Master's, Doctorate
5. Available forms of attendance	weekly
6. Semester/year	2020-2021
7. Number of study hours (total)	30 credit hours
8. Date of description preparing	1-9-2020

9. Course objectives

The study of advanced solid state physics, which includes the physical properties of solid matter (metals, semiconductors, insulators), discusses the model of free electrons and electric current when an external field is applied to the participation of electrons in calculating specific heat. It is also an introduction to important concepts of the Fermi surface level, which will be used to refine the method of describing and treating electrical and thermal conductivity in metals. It also explains the traditional model of the free electron gas (classical theory), the quantum theory of free electrons, the perceptual state of the electron gas, and the effect of the magnetic field on the movement of free electrons. Therefore, studying the origin of bands in solid materials is a very important topic that helps us understand the electrical, thermal, and optical properties of solid materials, in addition to knowing the structure of bands. Explaining the alternating electrical conductivity of matter in the presence of an alternating electric field, and this conductivity being closely linked to optical properties, covers the term "photoelectricity" at a range of frequencies, which is not limited to the visible range only, but extends from the high-frequency range to the low-frequency range.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives:

- ✓ Introduce the student to an introduction to solid-state physics
- ✓ Improving many of the physical properties of some materials, so that new metal alloys can be obtained that are characterized by high resistance to impact loads. The property of electrical conductivity in some semiconductors is also due to the presence of a small amount of impurity atoms. These defects also cause color centers in some materials, which makes them suitable for many technology applications. This is in addition to the connection between photo-luminescence and these impurities.

B - The skills objectives of the course:

- 1- Acquire the skill of calculating the electrical conductivity of materials.
- 2- Acquiring the skill of calculating the thermal conductivity of materials.

Teaching and learning methods:

- 1-Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films).

Evaluation methods:

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

C- Emotional and value goals

C1- The ability to communicate information after presenting it, discussing it, and

• .	. •	• .
ınter	preting	1t.

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- PowerPoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

Developing the student's mental abilities.

11. Course structure

Week	Hours	Required learning outcomes	Name of the unit/topic	Teaching method	Evaluation method
1 ^s , 2 nd , 3 rd	2-theoretical	The student's understanding of the lesson	The theoretical side Chapter One: Free electrons in metals Introduction, the Drude Model, the electrical conductivity of direct current in metals, the specific resistance of metals, the electronic thermal conductivity of metals. Chapter Two: The quantum theory of free electrons. Introduction, the classical model of the gas of free electrons, the quantum theory of free electrons, the Fermi surface, and calculating the Fermi energy. For metal, the state density of the electron phase, the electronic specific heat of metals, the effect of the Fermi surface on electrical conductivity, thermal conductivity, thermal conductivity in metals, the movement of electrons in the magnetic field, the Hall effect. Chapter Three: The theory of beams in solid materials Introduction, the origin	Theoretical	Daily and monthly tests

			of beams in solid materials, the periodic potential, the Bloch function, a one-dimensional lattice crystal, the density of the electronic state, actual mass, the concept of positive gaps, the study of the Fermi surface, the anomalous surface phenomenon, the orbital frequency (electron), the magnetic acoustic phenomenon De Haaz-Fan Alven.		
4 th , 5 th , 6 th	2-theoretical	The student's understandin g of the lesson	Solve the problems of the first, second and third chapters.	Theoretical	Daily and monthly tests
7 th , 8 th	2-theoretical	The student's understandin g of the lesson	Semester exam The theoretical aspect Chapter Four: Electrical and optical properties of solid materials, alternating electrical conductivity and optical properties, low- frequency region $(\omega \tau <<1)$, high-frequency region $(\omega \tau >>1)$, thermal ion emission.	Theoretical	Daily and monthly tests
9 th , 10 th	2-theoretical	The student's understandin g of the lesson	the theoretical side Solve the problems of Chapter Four Chapter Five: Introduction to crystal defects, point defects, point defects in ionic crystals, Schottky voids, Frenkel voids. Other types of point defects, linear defects, edge dislocations, twisted dislocations, Perker vector and circle, planar defects, defects resulting from packing errors, free surfaces	Theoretical	Daily and monthly tests

11 th , 12 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Other types of point defects, linear defects, edge dislocations, twisted dislocations, Perker vector and circle, planar defects, defects resulting from packing errors, free surfaces	Theoretical	Daily and monthly tests
13 th	2-theoretical	The student's understandin g of the lesson		Second semester exam	Theoretical	Daily and monthly tests
14 th , 15 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Other types of point defects, linear defects, edge dislocations, twisted dislocations, Perker vector and circle, planar defects, defects resulting from packing errors, free surfaces	Theoretical	Daily and monthly tests
	astructure		T			
1- Required prescribed books 2- Main references (sources)		1- Solid State Physics, written by Dr. Sobhi Saeed Al-Rawi 2- Introduction to solid state physics authorship by Charles Kittel.				
A - Recommended books and references (scientific journals, reports,)						
B - Electronic references, Internet sites						
	13. Course development plan					

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods. Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level 4 Molecular physics Phy437 Course description form Course description This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available.

1. Educational institution	University of Basrah - College of Science
	·
2. Scientific department/center	Physics
3. Course name/code	Molecular physics Phy437
4. The programs it participates in	Bachelor's degree, Master's degree
5. Available forms of attendance	weekly
6. Semester/year	2020-2021
7. Number of study hours (total)	30 credit hours
8. Date of description preparing	1-9-2020

9. Course objectives

Calculating the rotational, vibrational and molecular electronic transition spectra

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives:

- ✓ Introduce the student to an introduction to molecular physics.
- ✓ Introducing the student to how the molecular rotation spectrum arises because of the movement of atoms bonded together within the molecule around a specific axis.
- ✓ Study of particles that are classified as a symmetrical rigid rotor, which has a moment of inertia different from the linear and spherical case.
- ✓ Identify the nature of molecular vibration. Molecular vibration, which represents the change in the length of bonds between neighboring atoms in a single molecule, as if this process occurs within a limited range between the two atoms in proximity.

B - The skills objectives of the course:

1- Acquire the skill of recognizing the details of molecular physics.

Teaching and learning methods:

- 1-Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films).

Evaluation methods:

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

C- Emotional and value goals

- C1- The ability to communicate information after presenting it, discussing it, and interpreting it.
- C2- Linking information to the environmental reality and the Earth's system and the extent of its impact on different organisms.

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- PowerPoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

Developing the student's mental abilities.

11. Cou	irse structure					
Week	Hours	Required learning outcomes	Name of	the unit/topic	Teaching method	Evaluation method
1 ^s , 2 nd , 3 rd	2-theoretical	The studen understand g of the lesson	Rotationa Rotationa particles	retical aspect al spectrum al movement of al energy levels	Theoretical	Daily and monthly tests
4 th , 5 th , 6 th	2-theoretical	The studen understand g of the lesson	The parti solid, sph Molecule symmetri	retical aspect cles are like a nerical rotor as as a ical rigid rotor gal deformation	Theoretical	Daily and monthly tests
7 th , 8 th	2-theoretical	The studen understand g of the lesson	The theor	retical aspect or vibration	Theoretical	Daily and monthly tests
9 th , 10 th	2-theoretical	The studen understand g of the lesson	Converge levels	retical aspect ence of energy al vibration.	Theoretical	Daily and monthly tests
11 th , 12 th	2-theoretical	The studen understand g of the lesson	n The theor	retical aspect c transfers	Theoretical	Daily and monthly tests
13 th	2-theoretical	The studen understand g of the lesson	1	hapter exam	Theoretical	Daily and monthly tests
14 th , 15 th	2-theoretical	The studen understand g of the lesson	n Fibrotic t	ectronic	Theoretical	
	rastructure	1 1				
	references (sou	1- A Ato Der 2- A the	nic, Molecula tröder STRONOMI Atomic and M	ales and Photons ar and Quantum CAL SPECTRO Iolecular Physics FENNYSON	Physics by Wo SCOPY; An Ir	lfgang
	ommended book ces (scientific jo					

reports,)	
B - Electronic references,	
Internet sites	

13. Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods. Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level 4 Plasma physics Phy447 Course description form Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available.

1. Educational institution	University of Basrah - College of Science
2. Scientific department/center	Physics
3. Course name/code	Plasma physics Phy447
4. The programs it participates in	Bachelor's, Master's, Doctorate
5. Available forms of attendance	weekly
6. Semester/year	2020-2021
7. Number of study hours (total)	30 credit hours
8. Date of description preparing	1-9-2020

9. Course objectives

Study of how plasma is formed and its most important applications.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives:

✓ Introducing the student to an introduction to states of matter, including the fourth state, which is plasma.

B - The skills objectives of the course:

1- Acquire the skill of knowing the details of the fourth state of matter, which is plasma.

Teaching and learning methods:

- 1-Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films).

Evaluation methods:

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

C- Emotional and value goals

- C1- The ability to communicate information after presenting it, discussing it, and interpreting it.
- C2- Linking information to the environmental reality and the Earth's system and the extent of its impact on different organisms.

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- PowerPoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports.
- 2-Monthly tests.
- 3- Final exams.

\boldsymbol{D} - Transferable general and qualifying skills (other skills related to employability and personal development).

Developing the student's mental abilities.

11. Course structure

Week	Hours	Required learning outcomes	Name of the unit/topic	Teaching method	Evaluation method
1 ^s , 2 nd , 3 rd	2-theoretical	The student's understandin g of the	The theoretical aspect Plasma sources Plasma properties	Theoretical	Daily and monthly tests

		lesson		Plasma applications			
4 th , 5 th , 6 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Plasma and environment Semester exam Velocity distribution of plasma components	Theoretical	Daily and monthly tests	
7 th , 8 th	2-theoretical	The student's understandin g of the lesson		Semester exam Saha equation Plasma properties	Theoretical	Daily and monthly tests	
9 th , 10 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Movement of charged particles in fields	Theoretical	Daily and monthly tests	
11 th , 12 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Plasma drift Magnetic mirrors	Theoretical	Daily and monthly tests	
13 th	2-theoretical	The student's understandin g of the lesson		Second chapter exam	Theoretical	Daily and monthly tests	
14 th , 15 th	2-theoretical	The student's understandin g of the lesson		The theoretical aspect Electromagnetic waves in plasma, Alphen waves.	Theoretical		
	astructure						
1- Requ	ired prescribed	books					
				ma Physics - Dr. Assem Aboma physics and its application			
A - Recommended books and							
references (scientific journals,							
reports,)							
B - Electronic references,							
	Internet sites						
	13. Course development plan						
		1 0		culum based on recent version			
references. Adopting modern interactive teaching methods. Activating twinning programs with							

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods. Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Third Level: detectors and detection method PHY321

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

9. Educational institution	Basra University – Science Collage
10. Center \ Scientific Department	Physics
11. Name \ Course code	detectors and detection method PHY321
12. Programs in which it is entered	Bachelor's, Master's, Ph.D
13. Attendance forms available	weekly
14. Semester/year	2020-2021
15. The total number of study hours	30 hours
16. The date this description was prepared	1-9-2020
17. Course objectives	

It aims to study different types of nuclear radiation detectors and study their working mechanism...and methods and methods of detection, in addition to the most important types of radiation and ways of interacting with matter.

23. Course outcomes and teaching, learning and evaluation methods

- A- Cognitive objectives
- ✓ Introducing the student to nuclear radiation detectors.
- ✓ Introducing the student to the processes that occur within these reagents.
- ✓ Study the effect of nuclear reagents on ecosystem change.
- ✓ Introducing the student to the most important safety conditions and the initial procedures followed.
- B The skills objectives of the course.
- B1 Inferring methods of safety and protection of the ecosystem by knowing how to protect against radiation.

Teaching and learning methods

- 1- Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films)

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it

Teaching and learning methods

- 1-- Explanation and direct delivery of lectures.
- 2- Powerpoint presentation and screen .

Teaching and learning methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- D- Transferable general and qualifying skills (other skills related to employability and personal development).
- D1- Developing the student's mental abilities
 - D2 Understanding the processes that occur inside nuclear detectors and the extent of their impact on the environment.

Week	hours Required		Name of the	Teachin	Evaluation
		learning outcomes	unit/topic	g method	method
First Second Third	H2	Student understanding of the lesson	the theoretical side A general introduction to nuclear detectors, the interaction of radiation with matter, and lost energy	theoret ical	Daily and monthly tests
Fourth fifth sixth	H2	Student understanding of the lesson	the theoretical side Term Neutron interaction with matter	theoret ical	Daily and monthly tests
Seventh and eighth	H2	Student understanding of the lesson	First semester exam	theoret ical	Daily and monthly tests
The ninth and tenth	H2	Student understanding of the lesson	the theoretical side Types of reagents Flash reagents Semiconductor reagents	theoret ical	Daily and monthly tests
eleventh And the twelfth	H2	Student understanding of the lesson	Second semester exam	theoret ical	Daily and monthly tests
Thirteen th	H2	Student understanding of the lesson	the theoretical side Neutron detectors	theoret ical	Daily and monthly tests
		Student understanding of the lesson 1ـ الكتب المقرر 2ـ المراجع الرئيسية (ا		theoret ical	Daily and monthly tests
	يوصىي بها	اـ الكتب والمراجع التي (المجلات العلمية , التقار	Third semester exam		

	لانترنيت	ِ اجع الالكترونية, مواقع ا	ب ـ المر		
	••••				
And the				1	
fifteenth					

12. Course development plan

Communicating in developing the curriculum based on recent versions of books and references.

Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences.

Third level: Astronomy, PHY326

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

18. Educational Institution	University of Basra - College of Science
19. Scientific Department	Physics Center
20. Name/code of the course	Astronomy, Ph326
21. Programs that include	a bachelor's degree
22. Attendance forms available	weekly
23. Semester/year	2020-2021
24. The total number of study hours	45hours
25. The date this description was prepared	2020-9-1

Saigntific study of the planetarium (Kenler's la

26. Course objectives

Scientific study of the planetarium (Kepler's laws, Newton's laws of motion, the geometry of the sphere, spherical triangles, the planetarium, the coordinate systems on the planetarium, the four astronomical seasons, the phenomena of staggering (the rotation of the Earth's axis) and swaying, astronomical units of measurement.)

Study of the solar system (the physical properties of the sun, the physical properties of the moon, the phenomena of eclipses and solar eclipses, the types of planets, and the study of the physical properties of the planets. Budd's rule. Small asteroids. Meteors and meteors.) Knowing the values of the stars. The luminosity of the stars, the relationship of the luminosity to the luminous magnitudes. Movement of the stars, angular motion, radial velocity, tangential velocity, space velocity, factors affecting measurements of stellar speeds. Measurement of the physical properties of stars, the relationship of the mass of stars to their luminosity. Hertz-Sprank diagram)

Study of the daily apparent movement of celestial bodies. Phenomena accompanying the daily apparent movement of bodies. Sunrise and sunset. The length of the twilight period. Calculating solar time.

Weeks -	Hours - Cognitive objecti	Required learning outcomes	Name of the unit/topic	Teaching - method	Evaluation method
the first And the second And the	Н3	Student understanding of the lesson	the theoretical side	theoretical	Daily and monthly tests
And the	H3 roducing the student	Student understanding of the lesson	General introduction, astronomy, planets, and stars. triangle	theoretical	Daily and monthly tests
sixth Seventh and eighth	Н3	Student understanding of the lesson	Celestial mechanics, the zodiacal system, the galactic system, the movement of stars in the	theoretical	Daily and monthly tests
	skills objectives	of the course. owledge of astronomy.	sky, the zodiacal zone and the ecliptic, the four astronomical seasons, swaying and swaying, astronomical units of measurement		
and tenth		gStudent understanding of the lesson	the theoretical side	theoretical	Daily and monthly tests
eleventh twelveth	etiEAPlectures an	dStudent understanding of the lesson	the theoretical side	theoretical	Daily and monthly tests
Thirteent h	Н3	Student understanding of the lesson	The planets, the physical properties of the planets, the Bode base, meteors, meteoroids, and comets	theoretical	Daily and monthly tests
fourteent h Fifteenth	educational me H3 n methods	Student understanding of the lesson	meteoroids, and comets is and films) Second semester exam	theoretical	Daily and monthly tests
1-Daily 1	tests and laborate	pry reports			

3- Final exams

26. Infrastructure	
1- Required prescribed books	
2- Main references (sources)	[1] Atmospheric and space physics, Part Two - Astronomy - Hamid Majoul Al-Naimi and Fayyad Al- Najm [2]Astronomical Algorithms by Jean Meeus (2nd edition, December1998, Willmann-Bell, Inc.(.
Recommended books and references (scientific journals, reports,)	
B - Electronic references, Internet sites	

27. Course development plan

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Third level advanced electronics PHY308

Headquarters description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Educational institution	University of Basra - College of Science
Scientific	Physics
Department/Center	
3. Headquarters name/code	Advanced Electronics F308
R	
4. Programs included in it	Bachelor's, Master's, Doctorate e
5. Available forms of	weekly
attendance	
6. Semester/year	2021-2020
7. Number of study hours	60 credit hours
(total)	
8. Date this description was	2020-9-1
prepared	
9. Course objectives	

The advanced electronics course is designed to give the student an idea of how to amplify small signals using transistor circuits. It explains the factors affecting the quality of the amplified signal and how to obtain a signal with high quality and less interference.

A- Cognitive objectives

 \checkmark Introducing the student to the details of electronics.

Providing theoretical knowledge to the student in advanced electronics, the principles of transistor operation, and its most important applications in various electronic circuits.

- 10. Course outcomes and teaching, learning and assessment methods
- B The course's skills objectives.
- B1 Acquire the skill of dealing with electronic devices.

Teaching and learning methods

1-Theoretical lectures and discussions.

- 2-Using educational means (presentations and scientific films)
- **Evaluation methods**
- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- C- Emotional and value-based goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- Powerpoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- D General and qualifying transferable skills (other skills related to employability and personal development). (
- -D1- Developing students' mental abilities b
- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams

11. Course structure

TT. Cour	SC Struc	turc			
week	hours	Required	Name of the unit/topic	road	Evaluation
		learning		educat	method
		outcome		ion	
		S			
The	3n+1	Student	The theoretical aspect: A	theore	Daily and
first,	p	understa	review of methods for	tical	monthly
second		nding of	biasing the transistor		tests
and		the	Transistor bias circuits		
third		lesson	(fixed bias)		
			Transistor bias circuits		
			(feedback bias)		
the	3n+1	Student	The theoretical aspect: A	theore	Daily and
fourth	p	understa	review of methods for	tical	monthly
Fifth		nding of	biasing the transistor		tests
and		the	Transistor bias circuits		
sixth		lesson	(fixed bias)		

			Transistor bias circuits (feedback bias)		
Sevent h and eighth	3n+1 p	Student understa nding of the lesson	The theoretical aspect: A review of methods for biasing the transistor Transistor bias circuits (fixed bias) Transistor bias circuits (feedback bias)		Daily and monthly tests
The ninth and tenth	3n+1 p	Student understa nding of the lesson	The theoretical aspect: A review of methods for biasing the transistor Transistor bias circuits (fixed bias) Transistor bias circuits (feedback bias)	theore tical	Daily and monthly tests
atheist ic ten And the second ten	3n+1 p	Student understa nding of the lesson	The theoretical aspect: A review of methods for biasing the transistor Transistor bias circuits (fixed bias) Transistor bias circuits (feedback bias)	theore tical	Daily and monthly tests
Thirte enth	3n+1 p	Student understa nding of the lesson	Second semester exam	theore tical	Daily and monthly tests
Fourte enth and fifteen th	3n+1 p	Student understa nding of the lesson	The theoretical aspect: A review of methods for biasing the transistor Transistor bias circuits (fixed bias) Transistor bias circuits (feedback bias)		Daily and monthly tests

Level Three: Solar Energy, PHY309

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Educational institution	University of Basra - College of Science
2. Scientific department/center	Physics
3. Course name/code	Solar energy PHY309
The programs in which he participates	Bachelor's
5. Available forms of attendance	weekly
6. Semester/year	2021-2020
7. Number of study hours (total)	credit hours 30
8. The date this description was	2020-9-1
prepared	
Course objectives	

The energy of the sun is considered the main source of energy on the planet Earth, and from it it has been distributed and transformed into other energy sources, whether it is stored in wind energy, thermal energy in the ground, energy generated from waterfalls, solar energy, and other energy sources such as coal and wood, and since solar energy is the most important During the next century, the efforts of many countries will be

directed to renewable energy sources in their various forms, allocating the necessary amounts to develop products and research on exploiting solar energy as one of the most important sources of alternative energy to oil and gas. The largest share of research and applications has been given to the field of converting this source of energy from solar energy to Electricity, which is known as photovoltaics.

The availability of electrical energy has become one of the most important key factors for creating infrastructure in it, and the production of electricity from solar energy does not require centralized generation. Rather, the energy is produced and used in the same area or place, and this will save a lot of transportation costs. This method depends mainly on converting sunlight into Electrical energy. There are many materials in nature used in the manufacture of solar cells, which are combined with a specific electrical and engineering system to form what is called a solar panel, which is exposed to sunlight at a certain angle to produce the largest amount of electricity.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

Explaining the technical and physical principles of solar energy and the devices that are used to benefit from this energy, such as solar cells and solar collectors. Various solar energy technologies are also measured and evaluated by knowing the physical function of these devices and calculating the required size of solar cell systems and solar collectors for a specific energy need using appropriate software and communicating the technological, environmental, social and economic issues around solar energy in a concise and easily accessible manner.

- B The skills objectives of the course.
- B1 Acquire the skill of diagnosing electromagnetic radiation (radiation spectrum, solar constant).
- B2 Reasoning to know the factors affecting solar radiation and solar angles.

Teaching and learning methods

- 1-Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films)

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- C- Emotional and value goals

C1- The ability to communicate information after presenting it, discussing it, and interpreting it

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- Powerpoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- D Transferable general and qualifying skills (other skills related to employability and personal development).
- D1- Developing the student's mental abilities

10. Course structure					
week	hours	Required learning outcomes	Name of the unit/topic	Teaching method	Evaluation method
the first And the second And the thir	2 n	Student understanding of the lesson	the theoretical side Components as composition of the sun Geometric relationships between the su and the earth Electromagnetic radiation (radiation)		Daily and monthly tes

			spectrum, solar constant)		
Fourth fifth And the sixt	2 n	Student understanding of the lesson	the theoretical side Factors affecting solar radiation Solar angles		Daily and monthly tes
			Semester exan		
			Solar cells		
			Solar cell manufacturing		
Seventh an eighth	2 n	Student understanding of the lesson	Semester example the theoretical side	theoretical	Daily and monthly tes
			Features of the solar cell		
			Effect of parasi resistances		
The ninth a tenth	2 n	Student understanding of the lesson	Semester exanthe the theoretical side	theoretical	Daily and monthly tes

			Quantum efficiency and spectral response		
eleventh And the twelfth	2 n	Student understanding of the lesson	the theoretical side Solar collectors Flat complexes	theoretical	Daily and monthly tes
Thirteenth	2 n	Student understanding of the lesson	Concentrated solar collectors	theoretical	Daily and monthly tes
fourteenth And the fifteenth	2 n	Student understanding of the lesson	the theoretical side Solar Panels Solar energy systems	theoretical	Daily and monthly tes

12. Infrastructure				
1 -Required prescribed books				
2- Main references (sources)	Solar cells			
	Technical work principles and system applications			
	Written by Martin A. Crane			
A. Recommended books and references (scientific journals, reports,)				

B. B - Electronic references, Internet	
sites	

13. Course development plan

Communicating in developing the curriculum based on recent versions of books and references

Adopting modern interactive teaching methods

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Level 3 for PHY310 circuits

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Educational institution	University of Basra - College of
	Science
2. Scientific department/center	Physics
3. Course name/code	Logic circuits F310
4. The programs in which he	Bachelor's
participates	
5. Available forms of attendance	weekly
6. Semester/year	2021-2020
7. Number of study hours (total)	credit hours 30
8. The date this description was	2020-9-1
prepared	
Course objectives	

Introducing the student to numerical systems, logic gates and their properties, how to design logic using Karnoff diagrams, defining addition and subtraction circuits, comparison circuits, and multi-output circuits such as the encoder, decoder, and multiplexer, and how to design logic circuits

using these circuits. Introducing the student to flip-flop circuits and their types and how to benefit from them in building counter circuits. 10. Course outcomes and teaching, learning and evaluation methods A- Cognitive objectives □ Introducing the student to numerical systems, logic gates and their properties, how to design logic using Karnaugh diagrams, defining addition and subtraction circuits, comparison circuits, and multiple-output circuits such as the encoder, decoder, and multiplexer, and how to design logical circuits using these circuits. □ . Introducing the student to flip-flop circuits, their types, and how to benefit from them in building meter circuits B - The skills objectives of the course. B1 - Acquiring the skill of calculating logic circuits. Teaching and learning methods 1-Theoretical lectures and discussions. 2-Using educational means (scientific presentations and films) **Evaluation methods** 1-Daily tests and laboratory reports 2-Monthly tests 3- Final exams C- Emotional and value goals C1- The ability to communicate information after presenting it, discussing it, and interpreting it Teaching and learning methods 1--Direct explanation and delivery of lectures. 2- Powerpoint presentation and screen. **Evaluation methods** 1-Daily tests and laboratory reports 2-Monthly tests 3- Final exams D - Transferable general and qualifying skills (other skills related to employability and personal development). D1- Developing the student's mental abilities

11. Course	11. Course structure				
week	hours	Required learning outcomes	Name of the unit/topic	Teaching method	Evaluation method
the first And the second And the thir	2 n	Student understanding of the lesson	the theoretical side Numerical Systems	theoretical	Daily and monthly tes
Fourth fifth And the sixt	2 n	Student understanding of the lesson	the theoretical side Coding Systems Logic Gates Logic Simplification	theoretical	Daily and monthly tes
Seventh an eighth	2 n	Student understanding of the lesson	the theoretical side Karnough's Maps Karnough's Map	theoretical	Daily and monthly tes
The ninth a	2 n	Student understanding of the lesson	the theoretical side Arithmetic & Comparing Circui	theoretical	Daily and monthly tes
eleventh	2 n	Student understanding of the lesson	the theoretical side ncoders, Decoders	theoretical	Daily and monthly tes

And the twelfth			Multiplixers		
fourteenth And the fifteenth	2 n	Student understanding of the lesson	the theoretical side Flip-Flops Counters	theoretical	Daily and monthly tes

12. Infrastructure	
1 -Required prescribed books	
2- Main references (sources)	 [1] Introduction to Logic Design, Alan B. Marcovitz, Third Ed. [2] Digital Design- Morris Mano, PHI, 3rd Edition [3] Principles of Logic Design, Qasim M. Hussein, 2013.
Recommended books and references (scientific journals, reports,)	
B - Electronic references, Internetsites	

Level three for PHY318 circuits Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Educational institution	University of Basra - College of Science
2. Scientific department/center	Physics
3. Course name/code	X ray PHY318
 The programs in which he participates 	Bachelor's
5. Available forms of attendance	weekly
6. Semester/year	2021-2020
7. Number of study hours (total)	credit hours 30
The date this description was prepared	2020-9-1
Course objectives	

The course X-Ray 318 studies the basic concepts of X-rays and their applications in scientific research, medicine, and industries. The course provides information on how to generate and produce X-rays, as well as studying X-ray absorbance, X-ray filters, optics and detectors, and the risks resulting from X-rays. It also studies the basic principles of diffraction and

scattering and the factors affecting the intensity of X-rays. It also includes the study of different techniques whose basic principle of operation is X-rays. X-ray techniques are used in multiple scientific, medical and industrial fields. X-ray diffraction technology is one of the techniques used in scientific research fields and determines the compositional analysis of materials, the type of material, and others. We will study both X-ray irradiation and computed tomography, which are medical X-ray techniques. In addition to other techniques, such as small-angle X-ray scattering, X-ray fluorescence, proton-stimulated X-ray emission, and X-ray photoelectron spectroscopy.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

□ The X-ray course, F318, aims to help students understand the basic concepts of X-rays and their applications in scientific research, medicine, and industries. The course provides information on how to generate and produce X-rays, as well as studying X-ray absorbance, X-ray filters, optics and detectors, and the risks resulting from X-rays. It also studies the basic principles of diffraction and scattering and the factors affecting the intensity of X-rays. It also includes the study of different techniques whose basic principle of operation is X-rays. X-ray techniques are used in multiple scientific, medical and industrial fields. X-ray diffraction technology is one of the techniques used in scientific research fields and determines the compositional analysis of materials, the type of material, and others. We will study both X-ray irradiation and computed tomography, which are medical X-ray techniques. In addition to other techniques, such as small-angle X-ray scattering, X-ray fluorescence, proton-stimulated X-ray emission, and X-ray photoelectron spectroscopy.

- B The skills objectives of the course.
- B1 Acquire the skill of X-ray diagnosis.

Teaching and learning methods

- 1-Theoretical lectures and discussions.
 - 2-Using educational means (scientific presentations and films)

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it

Teaching and learning methods

- 1--Direct explanation and delivery of lectures.
- 2- Powerpoint presentation and screen.

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- D Transferable general and qualifying skills (other skills related to employability and personal development).
- D1- Developing the student's mental abilities

11. Course structure Name of the Required **Teaching Evaluation** week hours unit/topic learning method method outcomes the first 2 n the theoretical Daily and Student theoretical understandind side monthly tes And the of the lesson A review and second introduction to And the thir ray crystallography the nature of X rays, and X-ray production and

spectrum.

safety

Absorbance,

filters, optics, x ray detectors a

			Introduction to scattering and diffraction	
Fourth fifth And the sixt	2 n	Student understanding of the lesson	the theoretical side Crystal structur analysis and identity detection by X-ray diffraction and quantitative phase analysis Crystallization size, lattice strain, ideal crystals, stress and structure	Daily and monthly tes
Seventh an eighth	2 n	Student understanding of the lesson	Semester example the theoretical side X-ray irradiation and its quantitative advantages X-ray imaging techniques, and medical	Daily and monthly tes

			applications of ray irradiation		
The ninth a tenth	2 n	Student understanding of the lesson	the theoretical side CT scan CT applications	theoretical	Daily and monthly tes
eleventh And the twelfth	2 n	Student understanding of the lesson	the theoretical side X-rays are scattered at a small angle X-ray fluorescence	theoretical	Daily and monthly tes
fourteenth And the fifteenth	2 n	Student understanding of the lesson	the theoretical side Proton-induced X-ray emission X-ray photoelectron spectroscopy	theoretical	Daily and monthly tes

12. Infrastructure	
1 -Required prescribed books	
2- Main references (sources)	1- Elements of X-Ray Diffraction, B.D. Cullity S.R. Stock, Third Edition, 2014. 2-X-Ray Diffraction Crystallography, Yoshio Waseda, Eiichiro Matsubara, Kozo Shinoda, 2011. 3-Introduction to Medical Imaging Physics, Engineering and Clinical Applications, Nadine Barrie Smith, 2011
Recommended books and references	
(scientific journals, reports,)	
B - Electronic references, Internet	
sites	

Communicating in developing the curriculum based on recent versions of .books and references

.Adopting modern interactive teaching methods

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Third Level: detectors and detection method PHY321 Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1. Educational institution	Basra University – Science Collage
2. Center \ Scientific Department	Physics
3. Name \ Course code	detectors and detection method PHY321
4. Programs in which it is entered	Bachelor's, Master's, Ph.D
5. Attendance forms available	weekly
6. Semester/year	2020-2021
7. The total number of study hours	30 hours
8. The date this description was prepared	1-9-2020
9. Course objectives	

It aims to study different types of nuclear radiation detectors and study their working mechanism...and methods and methods of detection, in addition to the most important types of radiation and ways of interacting with matter.

- 10. Course outcomes and teaching, learning and evaluation methods
- A- Cognitive objectives
- ✓ Introducing the student to nuclear radiation detectors.
- ✓ Introducing the student to the processes that occur within these reagents.
- ✓ Study the effect of nuclear reagents on ecosystem change.
- ✓ Introducing the student to the most important safety conditions and the initial procedures followed.
- B The skills objectives of the course.
- B1 Inferring methods of safety and protection of the ecosystem by knowing how to protect against radiation.

Teaching and learning methods

- 1- Theoretical lectures and discussions.
- 2-Using educational means (scientific presentations and films)

Evaluation methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- C- Emotional and value goals
- C1- The ability to communicate information after presenting it, discussing it, and interpreting it

Teaching and learning methods

- 1-- Explanation and direct delivery of lectures.
- 2- Powerpoint presentation and screen .

Teaching and learning methods

- 1-Daily tests and laboratory reports
- 2-Monthly tests
- 3- Final exams
- D- Transferable general and qualifying skills (other skills related to employability and personal development).
- D1- Developing the student's mental abilities
 - D2 Understanding the processes that occur inside nuclear detectors and the extent of their impact on the environment.

11.11.	Course stru	icture			
Week	hours	Required	Name of the	Teachin	Evaluation
		learning	unit/topic	g	method
		outcomes		method	
First Second Third	H2	Student understanding of the lesson	the theoretical side A general introduction to nuclear detectors, the interaction of radiation with matter, and lost energy	theoret ical	Daily and monthly tests
Fourth	H2	Student understanding of the lesson	the theoretical side	theoret	Daily and
fifth sixth		or the lesson	Term Neutron interaction with matter	ical	monthly tests
Seventh	H2	Student understanding of the lesson		theoret	Daily and
and eighth		02 4.10 10 300 11	First semester exam	ical	monthly tests
The ninth and tenth	H2	Student understanding of the lesson	the theoretical side Types of reagents Flash reagents Semiconductor reagents	theoret ical	Daily and monthly tests
eleventh And the twelfth	H2	Student understanding of the lesson	Second semester exam	theoret ical	Daily and monthly tests
Thirteen th	H2	Student understanding of the lesson	the theoretical side Neutron detectors	theoret ical	Daily and monthly tests
	H2	Student understanding of the lesson		theoret	Daily and monthly
	المطلوبة	1- الكتب المقرر		ical	tests
	يوصىي بها	2- المراجع الرئيسية (ا اـ الكتب والمراجع التي (المجلات العلمية , التقار	Third semester exam		

	الانترنيت	راجع الالكترونية, مواقع	ب _ ال		
	••••				
And the	·			•	
fifteenth					

Communicating in developing the curriculum based on recent versions of books and references.

Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences.

Third level: Astronomy, PHY326

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

10. Educational Institution	University of Basra - College of Science
11. Scientific Department	Physics Center
12. Name/code of the course	Astronomy, Ph326
13. Programs that include	a bachelor's degree
14. Attendance forms available	weekly
15. Semester/year	2020-2021
16. The total number of study hours	45hours
17. The date this description was prepared	2020-9-1
18 Course objectives	

18. Course objectives

Scientific study of the planetarium (Kepler's laws, Newton's laws of motion, the geometry of the sphere, spherical triangles, the planetarium, the coordinate systems on the planetarium, the four astronomical seasons, the phenomena of staggering (the rotation of the Earth's axis) and swaying, astronomical units of measurement.)

Study of the solar system (the physical properties of the sun, the physical properties of the moon, the phenomena of eclipses and solar eclipses, the types of planets, and the study of the physical properties of the planets. Budd's rule. Small asteroids. Meteors and meteors.) Knowing the values of the stars. The luminosity of the stars, the relationship of the luminosity to the luminous magnitudes. Movement of the stars, angular motion, radial velocity, tangential

velocity, space velocity, factors affecting measurements of stellar speeds. Measurement of the physical properties of stars, the relationship of the mass of stars to their luminosity. Hertz-Sprank diagram)

Study of the daily apparent movement of celestial bodies. Phenomena accompanying the daily apparent movement of bodies. Sunrise and sunset. The length of the twilight period. Calculating solar time.

12. 10. Course outcomes and teaching, learning and evaluation methods
✓ A- Cognitive objectives
☐ Introducing the student to the introduction to astronomy, planets, and stars.
B - The skills objectives of the course.
B1 - Acquiring the skill of knowledge of astronomy.
Teaching and learning methods
1-Theoretical lectures and discussions.
2-Using educational means (scientific presentations and films)
Evaluation methods
1-Daily tests and laboratory reports

2-Monthly tests		
3- Final exams		

Weeks	Hours	Required learn outcomes	ing	Name of the unit/topic	Teaching method	Evaluation method
		outcomes			memod	
the first And the second And the third	Н3	Student understanding of the lesson		the theoretical side	theoretical	Daily and monthly tests
Fourth fifth And the sixth	Н3	Student understand of the lesson	ling	General introduction, planetarium, spherical triangle	theoretical	Daily and monthly tests
Seventh and eighth	Н3	Student understanding of the lesson		Celestial mechanics, the zodiacal system, the galactic system, the movement of stars in the sky, the zodiacal zone and the ecliptic, the four astronomical seasons, swaying and swaying, astronomical units of measurement	theoretical	Daily and monthly tests
The ninth and tenth	Н3	Student understanding of the lesson		the theoretical side	theoretical	Daily and monthly tests
eleventh twelveth	Н3	Student understanding of the lesson		the theoretical side	theoretical	Daily and monthly tests
Thirteent h	Н3	Student understanding of the lesson		The planets, the physical properties of the planets, the Bode base, meteors, meteoroids, and comets	theoretical	Daily and monthly tests
fourteent h Fifteenth	Н3	Student understanding of the lesson		Second semester exam	theoretical	Daily and monthly tests
13. Infr	astructure				•	L
1- Required pr	rescribed books	S				
2- Main references (sources)			[1] Atmospheric and space physics, Part Two - Astronomy - Hamid Majoul Al-Naimi and Fayyad Al- Najm			
		6		Astronomical Algorithms n, December1998, Willm	•	

Recommended books and references (scientific journals, reports,)	
B - Electronic references, Internet sites	

Communicating in developing the curriculum based on recent versions of books and references. Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences

Third Level: Instrument physics PHY338

Course description form

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1. Educational institution	University of Basra - College of Science
2. Scientific department/center	Physics
3. Course name/code	Instrumentation Physics 338
4. The programs he participates in	Bachelor's
5. Available forms of attendance	weekly
6. Semester/year	2021-2020
7. Number of study hours (total)	30 credit hours
8. Date this description was prepared	2020-9-1

9.Course objectives

Oriented towards preparing the bachelor's degree holder to work in government and industrial laboratories, where he possesses the ability to use and modify complex and sophisticated electronic and mechanical equipment. It provides a physics-centered perspective on making measurements and interpreting experimental data that is an important counterpoint to the perspective of construction-focused engineers and analysis-focused mathematicians. This course focuses on understanding the physics of devices and sensors used in industrial, medical, and engineering applications.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives				
☐ Introducing the student to practical physical devices.				
☐ Introducing the student to how to work with physical devices and perform measurements on them.				
B - The skills objectives of the course.				
B - The skins objectives of the course.				
B1 - Acquire the skill of working with physical devices and performing measurements on them.				
Teaching and learning methods				
Todoming and Todaming Methods				
1-Theoretical lectures and discussions.				
2-Using educational means (scientific presentations and films)				
Evaluation methods				
2. Manion monogo				
1-Daily tests and laboratory reports				
D - Transferable general and qualifying skills (other skills related to				
employability and personal development).				
D1- Developing the student's mental abilities				

15. Course structure					
Week	Hours	Required	Name of the	Teachin	Evaluation
		learning	unit/topic	g	method
		outcomes	_	method	
the first And the second And the third	H2	Student understanding of the lesson	theoretical side measurements instrumentation performance characteristics Displacement Measurement, Linear and Angular	theoretic al	Daily and monthly tests
Fourth fifth And the sixth	H2	Student understanding of the lesson	Semester exam Capacitive Sensors— Displacement Optical Encoder Displacement Sensors	theoretic al	Daily and monthly tests
Seventh and eighth	H2	Student understanding of the lesson	theoretical side Proximity Sensing for Robotics Distance Measurements Position, Location, Altitude Measurement	theoretic al	Daily and monthly tests
The ninth and tenth	H2	Student understanding of the lesson	theoretical side Level Measurement Temperature and Humidity Measurement Semester exam	theoretic al	Daily and monthly tests
eleventh And the twelfth	H2	Student understanding of the lesson	theoretical side Signal processing Ultrasonic Sensors	theoretic al	Daily and monthly tests
Thirteen th	H2	Student understanding of the lesson	Second semester exam	theoretic al	Daily and monthly tests
fourteen th And the fifteenth	H2	Student understanding of the lesson	theoretical side Final Project	theoretic al	Daily and monthly tests

16.Infrastructure	
1- Required prescribed books	
2- Main references (sources)	1 Introduction to Instrumentation, Sensors, and Process Control, William C. Dunn
Recommended books and references (scientific journals, reports,)	
B - Electronic references, Internet sites	

Communicating in developing the curriculum based on recent versions of books and references.

Adopting modern interactive teaching methods.

Activating twinning programs with international universities to learn about modern teaching curricula and methods and exchange experiences