Calcium Homeostasis

Calcium has a lot of cellular and tissue functions involving:

- 1) Nerve functions
- 2) Membrane permeability
- 3) Muscle contraction
- 4) Glandular secretions
- 5) Blood coagulation

- 99% of the body calcium is part of bone and 1% is present in blood and ECF.
 Calcium distribution in blood:
- 1) 45% circulates as free calcium ions referred to as **ionized** calcium
- 2) 50% is bound to protein (albumin)
- 3) 5% is bound to anions such as citrate and phosphate
- The amount of calcium present in the ECF is very small in comparison to that stored in bone
- Even in the adult, calcium in bone is not static; some bone is resorbed each day and calcium returned to the ECF.
- To maintain calcium balance, an equal amount of bone formation must take place.

Calcium homeostasis is regulated by

- 1) Parathyroid hormone (PTH)
- 2) Calcitonin
- 3) Calcitriol (Vitamin D)

Parathyroid hormone:

- PTH consists of 84 amino acids, is secreted from parathyroid gland in response to a low ionized calcium
- It increases the serum Ca2+ and decreases serum PO43- by:
- 1) Increase bone resorption (transport of Ca2+ from bone to blood) by increase the activity of osteoclasts (bone eating cells).
- 2) Increase renal reabsorption of Ca2+ and decrease renal reabsorption of PO43-
- 3) Converts 25-hydroxycholecalciferol (calcidiol) into 1, 25-dihydroxycholecalciferol (1, 25-DHCC or calcitriol) which is the active form of vitamin D. calcitriol increases the intestinal Ca2+ absorption.

Vitamin D3

- It increases the serum Ca2+ and decreases serum PO43- by:
- Vitamin D3 is a prohormone and must be converted into the active form which is 1, 25 dihydroxy cholecalciferol or calcitriol. The activation occurs in:
- a) In liver, hydroxylation at C25 position occurs, to form 25-hydroxy cholecalciferol (25-HCC) or calcidiol. 25-HCC is the major storage form.
- b) In plasma, 25-HCC is bound to vitamin D binding protein VDBP.
- c) In the kidney, it is further hydroxylated at C1 to form 1, 25-dihydroxy cholecalciferol (DHCC) by enzyme *1-*^[]-*hydroxylase* (*stimulated by PTH*). Since it contains three hydroxyl groups at 1, 3 and 25 positions, it is also called **Calcitriol**.
- d) In the kidney, OH-group may added to C24 to form 24, 25-dihydroxy cholecalciferol which is **inactive** form of vitamin D, ready for excretion.

- Vitamin D elevates plasma calcium through:
- a) On the intestine: it stimulates intestinal absorption of calcium and phosphate by an increased synthesis of a specific calcium-binding protein.
- **b) On the kidney:** it reduces the renal excretion of calcium.
- c) On the bones: it stimulates the mobilization of calcium and phosphate from bones to the blood (Bone resorption) when necessary.

- Causes for Vitamin D Deficiency:
- 1) People who are not exposed to sunlight properly.
- 2) Malabsorption of vitamin D (obstructive jaundice).
- 3) Abnormality of vitamin D activation due to liver and renal diseases or hypoparathyroidism (Deficiency of PTH).

Different forms of vitamin-D

Name	Generic name	Function
Vitamin D ₂	Ergocalciferol	Plant form
Vitamin D3	Cholecalciferol	Animal form
25-hydroxy Vitamin D ₃	Calciferol	Storage form
1,25-dihydroxy Vitamin D3	Calcitriol	Active form
24,25-dihydroxy Vitamin D3	Secalciferol	Excretory form

Calcitonin (thyroid hormone):

- Calcitonin probably has only a minor role in calcium homoeostasis.
- It is secreted when plasma calcium concentration rises and also in response to certain gut hormones.
- It decreases both serum calcium and phosphate by:
- 1) Increase the osteoblast activity (bone-forming cells) and decrease the osteoclast activity, so it transports Ca2+ from blood to bones.
- 2) Decrease the renal reabsorption of Ca2+ and PO43-

Serum calcium

- A healthy person has a total serum calcium of around 9—11 mg% (2.4 mmol/L)
- About 50% of serum Ca2+ is bound to albumin. Binding between Ca2+ and albumin is pH dependent.
- As the acidity increases the +ve charge on albumin $\rightarrow \downarrow$ Ca2+ bound
- 1) Acidosis (\downarrow pH) \rightarrow decrease binding between Ca2+ and albumin+
- 2) Alkalosis (↑ pH) → increase binding between Ca2+ and albumin-
 - Hence, the percentage of free Ca2+ increases in acidosis and decreases in alkalosis although the total calcium is unchanged.
 - Free Ca2+ (ionized) is the only biologically active form and it is responsible for the feedback regulation of PTH

- Free Ca2+ is difficult to be measured, while the total Ca2+ is easier (changes in serum albumin cause changes in total Ca2+).

- Patients with **low serum albumin** have total serum calcium lower than normal, while they have **normal free calcium**. These patients should not be diagnosed as hypocalcemic.
- In order to avoid this problem, clinical biochemists use the convention of the adjusted Calcium
- Most laboratories measure both total calcium and albumin, and when the albumin is abnormal, calculate what the total calcium would have been if the albumin had been normal

Adjusted Ca2+ (mmol/L) = total Ca2+ (mmol/L) + 0.02 × (47–albumin g/L)

- Where 47 represents the average albumin level in g/L
- In other words, each 1 g/L decrease of albumin, will decrease 0.02 mmol/L in measured serum Ca2+ and thus 0.02 must be added to the measured value to take this into account and get a corrected calcium.
- Example: serum total Ca2+ is **1.8 mmol/L** and Serum Albumin is **39 gm/L**
- Adjusted Ca2+ = 1.8 + 0.02 (47 39) = 1.96 mmol/L

Hypocalcaemia

- It is decreased serum total calcium < 2.1 mmol/L. may be caused by:
- a) Artefactual: Blood collected in EDTA tubes
- b) Hypoparathyroidism
- c) Vitamin D deficiency (Osteomalacia and rickets)
- d) Magnesium deficiency: Mg affects the secretion of PTH and hypomagnesaemia often leads to hypocalcemia, by inhibition of PTH.
 - **Treatment**: identification and treatment of the primary cause, oral Ca2+ supplements and active form of vitamin D.

Hypercalcaemia

- It is increased serum total calcium > 2.8 mmol/L. Life threatening if > 3.5 mmol/L. Caused by:
- a) Common causes:
- Primary hyperparathyroidism single parathyroid adenoma.
- Hypercalcaemia associated with Malignancy some tumors secret a protein called PTHrP (PTH-related protein) which has PTH like properties.

• b) Rare causes:

- Overdose of vitamin D treatment, diuretic therapy, or calcium therapy
- Milk alkali syndrome (increased Ca2+ intake + HCO3 as in antacids)

- Treatment is urgent if the adjusted calcium is > 3.5 mmol/L
- 1) IV saline to restore GFR and promote diuresis.
- 2) Bisphosphonates are the best calcium-lowering drugs they act by inhibiting bone resorption.
- 3) The cause of hypercalcaemia should be treated if possible. Surgical removal of parathyroid adenoma.

Phosphate

- Phosphate is abundant in the body and is an important intracellular and extracellular anion.
- In plasma, calcium and phosphate have a **reciprocal** relationship.
- Intracellular phosphate:
- Covalently attached to lipids and proteins.
- Has role in covalent modification of enzyme and ICF buffering.
- Extracellular phosphate:
- At physiological pH phosphate exists in ECF as monohydrogen phosphate and dihydrogen phosphate (inorganic phosphate) which is an ECF buffering.

Disorders of phosphate

Hyperphosphataemia	Hypophosphatemia
Hypoparathyroidism	Hyperparathyroidism
Renal failure	Insulin administration in DKA
Redistribution (cell lysis)	Respiratory alkalosis
	Non-absorbable antacid (aluminium hydroxide) that
	prevents the absorption

Bone metabolism

- Bone is constantly being broken down and reformed in process of bone remodeling. (osteoblast vs osteoclast activities).
- Biochemical markers of bone resorption and bone formation can be useful in assessing the extent of disease as well as monitoring treatment.

Bone markers

- 1) **Urinary hydroxyproline:** indicates bone resorption. However, is markedly affected by dietary gelatin.
- 2) Deoxypyridinoline: indicates bone resorption. Is better than hydroxyproline as it is not affected by diet
- 3) **ALP:** indicates increased osteoblast activity
- 4) **Osteocalcin:** best indicator for increased osteoblast activity
- 5) Serum calcium, albumin, phosphate, magnesium, PTH and vitamin D